
Vectorized Candidate Set Selection for
Parallel Ant Colony Optimization

Joshua Peake
Centre for Advanced Computational Science

Manchester Metropolitan University
Manchester, United Kingdom

J.Peake@mmu.ac.uk

Martyn Amos
Centre for Advanced Computational Science

Manchester Metropolitan University
Manchester, United Kingdom

M.Amos@mmu.ac.uk

Paraskevas Yiapanis
Centre for Advanced Computational Science

Manchester Metropolitan University
Manchester, United Kingdom

P.Yiapanis@mmu.ac.uk

Huw Lloyd
Centre for Advanced Computational Science

Manchester Metropolitan University
Manchester, United Kingdom

Huw.Lloyd@mmu.ac.uk

ABSTRACT
Ant ColonyOptimization (ACO) is awell-established nature-inspired
heuristic, and parallel versions of the algorithm now exist to take
advantage of emerging high-performance computing processors.
However, careful attention must be paid to parallel components of
such implementations if the full benefit of these platforms is to be
obtained. One such component of the ACO algorithm is next node
selection, which presents unique challenges in a parallel setting. In
this paper, we present a new node selection method for ACO, Vec-
torized Candidate Set Selection (VCSS), which achieves significant
speedup over existing selection methods on a test set of Traveling
Salesman Problem instances.
ACM Reference Format:
Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd. 2018.
Vectorized Candidate Set Selection for Parallel Ant Colony Optimization. In
GECCO ’18 Companion: Genetic and Evolutionary Computation Conference
Companion, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3205651.3208274

1 INTRODUCTION
Ant Colony Optimization (ACO) [10, 13] is a population-based op-
timization technique inspired by the foraging behavior of ants, and
it has been successfully applied in a wide variety of domains [28].
The fundamental principle of the algorithm is that agents represent-
ing ants traverse some structure (such as a graph), constructing a
solution to the given problem and laying virtual “pheromone trails”
as they proceed. The amount of pheromone deposited is propor-
tionate to the “quality” of the solution; as path choices made by
individual ants are informed by pheromone concentrations, this
leads the population to converge on high-quality solutions [25]. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208274

this paper, we focus on the MAX-MIN Ant System variant of
the algorithm [27], which allows only the “best performing” ant
to deposit pheromone (and also restricts the range of pheromone
concentrations, in order to prevent stagnation).

Because of the inherently distributed nature of ACO (whereby
ants work independently of each other, guided only by a shared
global pheromone network), the ACO algorithm presents significant
opportunities in terms of its implementation on high-performance
parallel hardware [2–4, 6, 8, 14, 21]. In terms of this paper, we are
specifically interested in performance improvements that are made
possible by the vector processing capabilities of chips such as the
Intel® Xeon Phi [22, 30], which have instructions that operate on
one-dimensional arrays of data (vectors), rather than on single data
items. In the case of Xeon Phi, these Single Instruction Multiple Data
(SIMD) instructions operate simultaneously on 16 floating point
registers.

A significant bottleneck can arise in ACO-based algorithmswhen
ants are required to select their next “move” [19]. Such algorithms
generally (but not exclusively) work on graph-based representa-
tions of problems, where ants traverse edges, moving from vertex
to vertex (as in the Traveling Salesman Problem (TSP) [11, 26]).
Because the number of possible “next moves” can be extremely
large, many algorithms use candidate sets (or candidate lists) to
restrict movement to a select subset of vertices [15], and this has
been successfully used in the Ant Colony System variant of ACO
[12].

More recently, the use of nearest neighbour candidate lists has
shown significant promise in solving large instances of the TSP
using ACO [4, 7]. This refinement is based on the assumption that
good solutions to the TSP avoid large “jumps”, and that they can
generally be found by making only relatively local transitions from
vertex to vertex. Although candidate lists are now a standard com-
ponent of parallel ACO-based algorithms [4, 7], previous imple-
mentations of this feature have failed to take advantage of the
vector processing capabilities of processors such as the Xeon Phi. In
this paper, we show how a modified representation of the nearest
neighbour list can fully utilize vector processing, yielding signifi-
cant performance improvements. Moreover, the speedup obtained
increases as the problem size grows, suggesting that our method

https://doi.org/10.1145/3205651.3208274
https://doi.org/10.1145/3205651.3208274

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd

will be a required component of future ACO-based algorithms for
large-scale instances of similar problems.

The rest of the paper is organized as follows: in Section 2 we
discuss relevant earlier work, before presenting our algorithm in
Section 3. We give and discuss our experimental results in Section 4,
before concluding in Section 5 with a brief consideration of possible
future work in this area.

2 BACKGROUND AND RELATEDWORK
Early work on parallelizing the basic ACO algorithm used multiple
independent runs of the sequential algorithm, with the best result
from all runs being selected [24]. Later work [16] investigated
its implementation on Graphics Processing Units (GPUs), which
offered significant acceleration of the basic algorithm [1, 2, 4, 7, 9].
We now focus on key developments that contribute to the work
described in the current paper.

The independent-roulette technique (iRoulette) was introduced by
Cecilia et al. [4] as a parallel alternative to the traditional roulette-
wheel selection method commonly used in sequential ACO algo-
rithms. Roulette wheel selection is used whenever an ant must
choose the next edge to traverse (and, thus, the next city to visit),
with the probability of an edge being selected being proportional to
its pheromone concentration. Although this is straightforward in
the sequential algorithm, control flow and synchronization issues
mean that it is more challenging in a parallel setting (Dawson and
Stewart subsequently proposed an alternative double-spin roulette
(DSRoulette) technique [8]). For an in-depth analysis of the proper-
ties of iRoulette, see [18].

With the availability of the Xeon Phi came new variants of
iRoulette, due to the potential for vectorization offered by the its Vec-
tor Processing Unit (VPU). The algorithm described in [17] (which
we refer to as vRoulette-1) is one example of this; the basic principles
remain the same, but this variant makes use of intrinsic instructions
available on the Xeon Phi to vectorize the iRoulette process, which
yields improved performance over the original method (as well as
over a vectorized version of the DSRoulette algorithm).We also note
the existence of another vectorized version of iRoulette, UVRoulette,
due to Tirado, et al. [31]. Along with their vRoulette-1 method,
Lloyd and Amos [17] utilized nearest neighbour information in
their scheme for selecting cities. However, in this implementation,
the candidate lists were used only to improve solution quality, and
did not yield any speedup. In this paper, we describe an amended
version of the algorithm described in [17], which replaces vRoulette-
1 with a properly vectorized nearest neighbour list (which we call
Vectorized Candidate Set Selection (VCSS). As we will demonstrate,
VCSS brings significant performance benefits in terms of execution
time, especially with larger problem instances.

In the rest of this Section, we give a brief description of the
baseMAX-MIN Ant System (MMAS), and more details of the
iRoulette method (both of which provide a foundation for our own
contributions described in this paper).

2.1 MAX-MIN Ant System
ACO is an iterative algorithm, in which each step comprises two
main phases: Tour Construction and Pheromone Update. During
the tour construction phase, ants construct tours of the graph,

making probabilistic choices based on heuristic weights derived
from the lengths and pheromone values associated with edges in the
complete graph. Each of them ants starts on a different randomly-
selected vertex of the graph. At each stage in the construction of a
tour, the probability of ant k on vertex i choosing to move to vertex
j is given by:

pki, j =

[τi, j]α [ηi, j]β∑

i∈Nk
i
[τi, j]α [ηi, j]β

i ∈ N k
i

0 otherwise.
(1)

Here, ηi, j = 1/di, j where di, j is the length of edge (i, j), τi, j
is the pheromone value for edge (i, j) and N k

i is what we call the
feasible region for vertex i . One constraint inherent to TSP problems
is that cities can only be visited once. This is enforced in the ACO
algorithm through the tabu list, which keeps track of every vertex
visited during the current tour. During tour construction, vertices
on the tabu list are ignored when making the choices. Thus, the
feasible region, Ni is the set of all vertices not in the tabu list which
are adjacent to vertex i .

During the pheromone update phase, ants deposit pheromone
on the edges traversed in their tours in an amount that is propor-
tional to the objective quality of the tour (measured in terms of its
length). InMAX-MIN Ant System, only one ant (the iteration
best or best-so-far ant) deposits pheromone. This makesMMAS
well-suited to a parallel implementation, since we do not require
concurrent write access to the pheromone matrix in order to allow
multiple agents to deposit pheromone in parallel.

The amount of pheromone deposited is given by

τi, j = τi, j + ∆τi, j∀(i, j) ∈ L (2)

where L is the set of edges in the complete graph and ∆τi, j is the
amount of pheromone deposited on edge (i, j), given by

∆τi, j =

{
1/C if edge(i, j) ∈ T

0 otherwise
(3)

where T is the set of edges in the iteration-best or best-so far tour,
and C is the total length of this tour. Once pheromone has been
distributed, the next step is pheromone evaporation, using the rule

τi, j = (1 − ρ)τi, j∀(i, j) ∈ L (4)

where ρ ∈ [0, 1] controls the evaporation rate.
In MMAS pheromone values in are “clamped" between two

limits, τmin and τmax , which are defined by

τmax =
1

pCbest
;τmin = τmax

2(1 − a)
a(nneighbours + 1)

(5)

where nneighbours is the number of nearest neighbours and a =
exp(log(0.05)/n). These limits are used to prevent solution stag-
nation, where one edge dominates others in its vicinity, due to it
having a significantly higher pheromone concentration than the
others (such edges will effectively become “locked in” to solutions,
leading to a rapid loss of diversity). This restriction exists in conjunc-
tion with the standard pheromone evaporation operation, which is
used at every iteration to allow concentrations to gradually decay
(and thus allow the algorithm to “forget” sub-optimal solutions,
over time).

VCSS for Parallel ACO GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

2.2 Independent Roulette
In serial implementations of ACO, the probabilistic selection of
edges (according to Equation 1) is performed using the Roulette
Wheel algorithm. Various approaches have been used to paral-
lelize this algorithm: here we concentrate on independent-roulette
(iRoulette) [4], which forms a component of our VCSS algorithm
described in Section 3.4.

In iRoulette, a choice between N weights,Wi , i ∈ [1,N] is made
by multiplying the edge weights by uniform random deviates Ri , i ∈
[1,N] with Ri ∈ [0, 1]. The selected edge is then

isel = argmax
i ∈[1,N]

WiRi .

In this scheme, the probability of selecting an edge is no longer
proportional to the weights, although higher-weighted edges are
more likely to be selected than those with lower weights. A de-
tailed analysis of iRoulette [18] shows that this produces greedier
selection than standard Roulette Wheel selection, but the effect
on solution quality is small. Furthermore, forMMAS using this
scheme demonstrably speeds up convergence to a solution.

A vectorized version of iRoulette, vRoulette-1 [17], forms part
of a Xeon Phi implementation of MMAS and is the inspiration
for the work presented here. In this original algorithm, the gener-
ation of random deviates and weight multiplication is vectorized
across 16 lanes, with a final reduction over the vector producing
the maximum.

3 VECTORIZED CANDIDATE SET SELECTION
The key contribution in this work is a vectorized algorithm (and
associated data structure) to accelerate vertex selection using can-
didate sets (nearest neighbour lists). The selection procedure is
modified (compared to previous versions) so that only vertices in the
nearest neighbour list for the current vertex are considered. Only in
cases where all of these are tabuwill the remainder of the feasible re-
gion be considered. Typically, the nearest neighbour maximum list
length is set to ∼20; for large instances (with thousands of vertices)
this can speed up the selection process by an order of magnitude
or more.

We base our algorithm implementation on the Xeon Phi code
described in [17]. The code has been ported to use the AVX512 vec-
tor instruction set of the Knight’s Landing architecture (but it can
be ported to any multi-core SIMD architecture). The Intel® Xeon
Phi range of processors are designed for use in high-performance
computing, containing between 57-72 cores depending on the pro-
cessor. These cores provide 4 threads (concurrent processes) each,
which enables a high level of parallelization and vectorization. The
latest generation of Xeon Phi, Knight’s Landing, has several benefits
over the previous generation, Knight’s Corner, including a higher
number of processor, and support for AVX-512 Single Instruction
Multiple Data (SIMD) instructions, which allows for highly efficient
vectorization of the ACO algorithm.

3.1 Instance Preprocessing
A potential performance problem is caused by the distribution of
nearest neighbours in the problem instance. The relative proximity
of vertices in space is not necessarily correlated with the vertex
indices (that is, two vertices that are spatially adjacent might have

indices that are widely separated, and vice versa; see Figure 1). If the
indices of nearest neighbours tend to be close together, the nearest
neighbour list can be kept short. Conversely, in the worst case,
the nearest neighbour list will contain the full set of Np entries. In
order to keep the size of the nearest neighbour list relatively low, we
pre-process the problem instance before constructing the nearest
neighbour list, by sorting the vertices into greedy tour order.

Figure 1: Sample TSP graph, with the current city (labelled 0)
in the center, and five nearest neighbour cities highlighted
in the dashed containing region.

3.2 Nearest neighbour List Construction
During the setup phase of the algorithm, the distance matrix (an
n×nmatrix encoding the edge lengths of the complete TSP graph) is
used to calculate a vectorized nearest neighbour list data structure.
This is performed as follows:

Let the number of nearest neighbours be Nnn , and the width of
a SIMD vector (in floats) be p. We then let

Np = ⌈Nnn/p⌉,
the maximum number of SIMD vectors required to store one line
of the nearest neighbour data structure. The data structure then
comprises a list of up to Np Nearestneighbour objects (one per
vertex) with each Nearestneighbour entry containing an integer
index ivec and a p-wide bitmap mask. To add a vertex j to the
nearest neighbour list, we first ensure that there exists an entry
with ivec = ⌊j/p⌋, and set the bit in mask corresponding to j
mod p.

The data structure for a vertex is filled as follows: first, the
other vertices are sorted by distance, and the first Nnn of these
are processed. For each of these vertices, ivec is calculated. If a
Nearestneighbour entry already exists for this value of ivec, the
appropriate bit is set in mask. If not, a new Nearestneighbour is
added to the end of the list. The data structure is illustrated in
Figure 2, for a vector width of 16.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd

Figure 2: Nearest neighbour data structure, with each vertex
having an associated array of nearest neighbour objects con-
taining a vector index ivec and a bit mask. A sentinel value
of ivec = −1 is used to indicate the end a line in the data
structure. n is the number of vertices and n16 is the maxi-
mum number of entries for a vertex (for 16-wide vectors)

Figure 3: Masked load process using the nearest neighbour
list to retrieve the weights of nearest neighbour vertices.

3.3 Tour Construction
We use OpenMP to assign each ant’s tour construction process to a
single thread. As no updates are made to any of the values used by
the ants until the end of an iteration, and ants only write to their
own local memory, no synchronization is required. We randomly
select the starting vertex for each tour. We then repeatedly call
the edge selection function to determine the ant’s path around the
graph. Each ant maintains its own tabu list, which keeps track of
visited vertices.

In our experiments, described below, we evaluate two vectorized
edge selection functions: vRoulette-1 (which examines every vertex
in the feasible region) and Vectorized Candidate Set Selection (VCSS),
our new vectorized procedure, which uses nearest neighbour infor-
mation. We now describe VCSS in more detail.

3.4 Vectorized Candidate Set Selection (VCSS)
Here, we propose a new selection procedure, Vectorized Candidate
Set Selection, based on iRoulette [4], in which iRoulette selection is
performed on a candidate set drawn from the nearest neighbour
list data structure. If this fails to produce a selection (which will
only happen when all the nearest neighbours have already been

visited in the tour), the vRoulette-1 procedure is used to select a
vertex from the remaining feasible region.

VCSS takes the tabu list, an array of weights and the nearest
neighbour list for the current vertex and then proceeds as follows
(assuming a vector width p): first, we initialize p-wide vectors rep-
resenting the running maximum weight and corresponding vertex
indices. The algorithm then iterates over the nearest neighbour
list. For each Nearestneighbour object, we load the edge weights for
the corresponding vertices as a single p-wide vector. We use the
bitmask in the Nearestneighbour object to mask this weight vector
such that only the vertices in the nearest neighbour list remain
(illustrated in Figure 3).

We also construct a vector of consecutive integers, correspond-
ing to the vertex indices in the vector. We multiply the weight
vector by a p-wide vector of random deviates (produced using a sim-
ple linear congruential generator). We then compare the modified
weight vector, on an element-wise basis (in a single instruction),
with the running maximum. This produces a bit mask which is
used to update both the running maximum and the correspond-
ing index vector. A reduction is then performed over the vector
lanes to produce the maximum weight and corresponding index
(in our implementation, this reduction is performed in log2 p steps
using bit-swizzling instructions). If no edge has been selected, the
vRoulette-1 algorithm is used by default on the complete set of
weights.

The algorithm is formally described in Algorithm 1. Here, Ran-
dom() is a function which returns a p-wide vector of uniform de-
viates, and ApplyMask(mask, a, b) is a function which returns a
vector filled with values from a in positions where the correspond-
ing value of mask is set, and values from b where the mask value is
not set.

Algorithm 1: Pseudo-code for Vectorized Candidate Set Selec-
tion.
Input :Edge Weight arrayW0...N−1, Tabu Mask array

T0...n−1, Maximum number of nearest neighbours
Np , nearest neighbour list L0...Np−1

Output :Selected Edge
// Variables in bold are p-vectors, superscripts indicate vector
lanes

Wmax = (0...0);
Imax = (0...0);
for i = 0 to Np − 1 do

if L[i].ivec , −1 then
R = Random();
V = L[i].mask;
I = (pL[i].ivec...pL[i].ivec + p − 1);
w = ApplyMask(Vi ,Wi × R, (−1... − 1));
w = ApplyMask(Ti , (−1...1),w);
max_mask = w >Wmax ;
Imax = ApplyMask(max_mask,w,Wmax);

end
end
//Reduction
j = argmax(Wmax);
return Ijmax ;

VCSS for Parallel ACO GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

3.5 Pheromone Update
The pheromone update process is split into four phases: Deposit,
evaporation, clamping and edge probability calculation. The deposit
phase is carried out by a single thread, with little potential for vec-
torization. The remaining phases are carried out in a pair of nested
loops, with the outer loop being parallelized with OpenMP. The
inner loop iterates over the pheromone matrix 16 values at a time,
using vector instructions to perform the evaporation, clamping and
probability calculations.

4 EXPERIMENTAL RESULTS
In what follows, wemeasure the performance three variants of ACO:
the first is CPU reference code, the second uses only vRoulette-1,
and the third uses our new VCSSmethod. Experiments were carried
out on a machine with an Intel® Xeon Phi 7210 processor with 64
cores and 4 threads per core (for a total of 256 threads), running at a
base speed of 1.3GHz. The code was compiled with the Intel® C++
compiler (icc) at -O3 optimization level. The code was run under
Linux, with timings obtained using the gettimeofday() function. The
CPU reference code used is ACOTSP version 1.03 [23], compiled
with gcc (with optimization -O3) and run on a Linux machine
containing an 8-core Intel® Xeon E5-2650 v2 at a base speed of
2.6GHz.

4.1 ACO Parameters and Problem Instances
We use 32 nearest neighbours for our experiments, which is both
in line with Dorigo and Stützle’s recommended list size [29], and a
convenient power of two for the purposes of data alignment. The
values of the MMAS parameters used are as follows: α = 1, β =
2, ρ = 0.02. In all cases, the number of ants is set to 256 (so that all
available threads are used when assigning ants to threads).

The problem instances used in our experiments are taken from
the TSPLIB library[20], and include all instances solved in [17] and
[32]. We also include larger instances, in order to investigate the
performance of the algorithm as the problem size increases. The
instances used are: lin318, pcb442, rat783, pr1002, fl1577, pr2392,
fl3795, rl5934, pla7397, and rl11849. For each instance, we per-
formed 50 runs of 1024 iterations.

4.2 Execution Time
We measure execution time on a per-iteration basis. Results are
shown in Figure 4, which (log) plots the mean time per iteration
over all instances for VCSS and vRoulette-1 on the Xeon Phi, and
ACOTSP on CPU, and Table 1, which gives the numerical values,
along with the speedup.

While vRoulette-1 and VCSS have similar execution times on the
smaller instances, as the instance size grows, the execution time for
VCSS grows more slowly than that of vRoulette-1. For the largest
instance, rl11849, VCSS is faster than vRoulette-1 by an order of
magnitude, and is faster than the reference code by two orders
of magnitude. On the other hand, vRoulette-1, while performing
two orders of magnitude faster than the reference code on smaller
instances, shows a declining speed-up compared to the CPU as the
instance size grows.

Table 1: Execution time per iteration in milliseconds, and
speedup relative to CPU.

CPU vRoulette-1 VCSS
Instance t/ms t/ms Speedup t/ms Speedup
lin318 18.1 0.73 24.8 0.52 34.8
pcb442 29.2 1.37 21.3 0.74 39.5
rat783 68.3 5.65 12.1 1.37 49.9
pr1002 94.1 9.01 10.4 1.85 50.9
fl1577 176.7 20.9 8.45 3.5 50.1
pr2392 371.0 46.4 8.00 7.02 52.9
fl3795 785.7 143.3 5.48 13.5 58.2
rl5934 2088.9 426.8 4.90 27.9 74.9
pla7397 3388.3 724.3 4.68 43.04 78.7
rl11849 10578.8 1975.0 5.36 97.47 108.5

Figure 4: Execution times for ACOTSP, vRoulette-1 and VCSS.

4.3 Solution Quality
In Figure 5 we show box plots of solution quality of each algorithm
(where solution quality is measured as the ratio of the length of the
best tour found to the known optimum for the problem instance).
We would expect differences between the solution quality obtained
with the CPU code and the two Xeon Phi variants due to the modi-
fied selection probabilities in the iRoulette scheme compared with
those in the roulette wheel selection used by ACOTSP. It is already
known that iRoulette can affect the solution quality on individual in-
stances, although its average behavior does not significantly affect
the quality of solution [18]. There is some variation between the
solution qualities obtained using vRoulette-1 and VCSS. It should
be noted that this experiment used a relatively small sample of
instances, with 50 runs per instance. In order to measure effects
on solution quality, a larger sample of instances (with one run per
instance) would be better. Additionally, for the larger instances, the
number of iterations (1024) is relatively small and the solutions may

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd

not be converged. However, the focus of this paper is the efficiency
measured in terms of time per iteration: in order to investigate any
effects on solution quality, more extensive experiments would be
required. Given that VCSS is formally equivalent to the nearest-
neighbour list algorithms already widely studied in serial ACO, we
would not expect to see large systematic effects on the solution
quality arising from the use of VCSS, although this will be a topic
for further investigation.

Figure 5: Solution quality for ACOTSP, vRoulette-1 and VCSS.

4.4 Discussion
We have demonstrated that significant speedups are obtained us-
ing our VCSS scheme. The speedup over vRoulette-1 grows as the
instance size increases. Without the nearest neighbour list, the tour
construction process has time complexity O(n2) (since at each of n
vertices, n − 1 vertices are included in the selection process). The
nearest neighbour list reduces this complexity to O(n) (since the
workload per vertex is constant, determined only by the size of the
nearest neighbour list). The speedup, relative to the CPU code, also
increases with the instance size. This is more difficult to explain,
since the CPU code also uses a fixed size nearest neighbour list, and
the execution time should therefore scale in the same way. However,
considering the number of 16-wide vectors which are processed in
making a selection with vRoulette-1, we see that - for instances up
to around 500 vertices - this is less than or equal to the size of the
nearest neighbour list. The increase in speed up is, therefore, due to
the nearest neighbour list conferring minimal benefit with smaller
instances. In this case, we would expect the speedup to eventually
level off.

5 CONCLUSION
In this paper, we presented VCSS, a novel nearest neighbour vector-
ization technique and selection method for ant colony optimization.
This method is an order of magnitude faster than the previous best-
performing algorithm on the Xeon Phi platform, vRoulette-1, and
two orders of magnitude faster than the reference CPU code.

While we have shown that the performance of VCSS improves
with increasing instance size, there is a limit to how far this can
be pursued. One of the inherent limitations of the general ACO
algorithm is its O(n2) memory complexity, due to the need to store
a square pheromone matrix. Around 500MB of memory is required
for our largest instance, and to move to the next order of magni-
tude (a 100,000 city instance) we would require around 37GB. This
limitation must be overcome before the speed gains obtained using
the latest parallel and vector ACO techniques can be fully exploited
on larger instances. The PartialACO [5] method is a promising
development in overcoming this barrier.

Our solution may also benefit further from the inclusion of local
search, which is often used to accelerate convergence [13]. While
local search may be parallelized, there are currently no vectorized
algorithms which can utilize the full power of many-core SIMD
hardware. The possibility of using local search with parallel ACO
requires further investigation.

There are a number of areas for further investigation in terms of
the details of our VCSS algorithm. Firstly, the fall-back to vRoulette-1
when all nearest neighbours are tabu introduces a potential load-
balance issue (although, in practice, this happens very rarely). The
work carried out by each thread will differ, depending on howmany
times vRoulette-1 is used, and all threads must wait for the slowest
to complete. This could be alleviated either by using a faster fall-
back algorithm, or by organizing the workload differently, with
ants sending work to a pool of threads, rather than decomposing
the work strictly by ant.

Secondly, the distribution of the lengths of the nearest neigh-
bour lists (in terms of the number of vectors required to store the
nearest neighbours) is another potential source of load imbalance.
The greedy tour scheme used here to reorder the vertices may be
improved upon. It is possible, for example, that a distribution of list
lengths with a larger mean, but smaller variance, could give shorter
execution times, due to improved load balancing. A full analysis of
the relationship between this distribution and the load balance is
another area for future work.

REFERENCES
[1] Alberto Cano, Juan Luis Olmo, and Sebastián Ventura. Parallel multi-objective ant

programming for classification using GPUs. Journal of Parallel and Distributed
Computing, 73(6):713 – 728, 2013.

[2] José M Cecilia, José M García, Manuel Ujaldón, Andy Nisbet, and Martyn Amos.
Parallelization strategies for Ant Colony Optimisation on GPUs. In Parallel and
Distributed ProcessingWorkshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, pages 339–346, May 2011.

[3] José M Cecilia, Andy Nisbet, Martyn Amos, José M García, and Manuel Ujaldón.
Enhancing GPU parallelism in nature-inspired algorithms. The Journal of Super-
computing, 63(3):773–789, 2013.

[4] José M Cecilia, José M García, Andy Nisbet, Martyn Amos, and Manuel Ujaldón.
Enhancing data parallelism for Ant Colony Optimization on GPUs. Journal of
Parallel and Distributed Computing, 73(1):42–51, 2013.

[5] Darren M Chitty. Applying ACO to large scale TSP instances. In UK Workshop
on Computational Intelligence, pages 104–118. Springer, 2017.

[6] Laurence Dawson. Generic Techniques in General Purpose GPU Programming with
Applications to Ant Colony and Image Processing Algorithms. PhD thesis, Durham

VCSS for Parallel ACO GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

University, UK., 2015.
[7] Laurence Dawson and Iain A Stewart. Candidate set parallelization strategies for

Ant Colony Optimization on the GPU. In International Conference on Algorithms
and Architectures for Parallel Processing, pages 216–225. Springer, 2013.

[8] Laurence Dawson and Iain A Stewart. Improving Ant Colony Optimization
performance on the GPU using CUDA. In 2013 IEEE Congress on Evolutionary
Computation, pages 1901–1908, June 2013.

[9] Audrey Delévacq, Pierre Delisle, Marc Gravel, and Michaël Krajecki. Parallel
ant colony optimization on graphics processing units. Journal of Parallel and
Distributed Computing, 73(1):52–61, 2013.

[10] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization.
IEEE Computational Intelligence Magazine, 1(4):28–39, 2006.

[11] Marco Dorigo and Luca Maria Gambardella. Ant colonies for the Travelling
Salesman Problem. BioSystems, 43(2):73–81, 1997.

[12] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a cooperative
learning approach to the Traveling Salesman Problem. IEEE Transactions on
Evolutionary Computation, 1(1):53–66, Apr 1997.

[13] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. Bradford Company,
Scituate, MA, USA, 2004.

[14] Jie Fu, Lin Lei, and Guohua Zhou. A parallel Ant Colony Optimization algorithm
with GPU-acceleration based on All-In-Roulette selection. In Advanced Computa-
tional Intelligence (IWACI), 2010 Third International Workshop on, pages 260–264,
2010.

[15] Fred Glover. Tabu search – Part I. ORSA Journal on computing, 1(3):190–206,
1989.

[16] Wang Jiening, Dong Jiankang, and Zhang Chunfeng. Implementation of Ant
Colony Algorithm based on GPU. In CGIV ’09: Proceedings of the 2009 Sixth
International Conference on Computer Graphics, Imaging and Visualization, pages
50–53, Washington, DC, USA, 2009. IEEE Computer Society.

[17] Huw Lloyd and Martyn Amos. A highly parallelized and vectorized implementa-
tion of Max-Min Ant System on Intel Xeon Phi. In 2016 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 1–6, Dec 2016.

[18] Huw Lloyd and Martyn Amos. Analysis of independent roulette selection in
parallel Ant Colony Optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’17, pages 19–26, New York, NY, USA, 2017.
ACM.

[19] Marcus Randall and James Montgomery. Candidate set strategies for Ant Colony
Optimisation. In International Workshop on Ant Algorithms, pages 243–249.
Springer, 2002.

[20] Gerhard Reinelt. TSPLIB - a Traveling Salesman Problem library. ORSA Journal
on Computing, 3(4):376–384, 1991.

[21] Rafał Skinderowicz. The GPU-based parallel Ant Colony System. Journal of
Parallel and Distributed Computing, 98(Supplement C):48 – 60, 2016.

[22] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod, Sun-
daram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. Knights
Landing: Second-generation Intel® Xeon Phi product. IEEE Micro, 36(2):34–46,
2016.

[23] Thomas Stützle. ACOTSP. Available at http://iridia.ulb.ac.be/~mdorigo/ACO/
downloads/ACOTSP-1.03.tgz (2005/06/12).

[24] Thomas Stützle. Parallelization strategies for Ant Colony Optimization. In PPSN
V: Proceedings of the 5th International Conference on Parallel Problem Solving from
Nature, pages 722–731, London, UK, 1998. Springer-Verlag.

[25] Thomas Stutzle and Marco Dorigo. A short convergence proof for a class of ant
colony optimization algorithms. IEEE Transactions on Evolutionary Computation,
6(4):358–365, 2002.

[26] Thomas Stützle and Holger Hoos. MAX-MIN ant system and local search for the
Traveling Salesman Problem. In Evolutionary Computation, 1997., IEEE Interna-
tional Conference on, pages 309–314, Apr 1997.

[27] Thomas Stützle and Holger H Hoos. Max–min ant system. Future Generation
Computer Systems, 16(8):889–914, 2000.

[28] Thomas Stützle, Manuel López-Ibáñez, and Marco Dorigo. A concise overview of
applications of Ant Colony Optimization. In James J. Cochran, Louis A. Cox, Pinar
Keskinocak, Jeffrey P. Kharoufeh, and J. Cole Smith, editors, Wiley Encyclopedia
of Operations Research and Management Science. John Wiley & Sons, Inc., 2010.

[29] Thomas Stützle and Marco Dorigo. Ant Colony Optimization. 01 2004.
[30] Xinmin Tian, Hideki Saito, Serguei V Preis, Eric N Garcia, Sergey S Kozhukhov,

Matt Masten, Aleksei G Cherkasov, and Nikolay Panchenko. Practical SIMD
vectorization techniques for Intel® Xeon Phi coprocessors. In Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 1149–1158. IEEE, 2013.

[31] Felipe Tirado, Ricardo J. Barrientos, Paulo González, and Marco Mora. Efficient
exploitation of the Xeon Phi architecture for the Ant Colony Optimization (ACO)
metaheuristic. The Journal of Supercomputing, 73(11):5053–5070, Nov 2017.

[32] Felipe Tirado, Angelica Urrutia, and Ricardo J. Barrientos. Using a coprocessor
to solve the Ant Colony Optimization algorithm. In 2015 34th International
Conference of the Chilean Computer Science Society (SCCC), pages 1–6, Nov 2015.

http://iridia.ulb.ac.be/~mdorigo/ACO/downloads/ACOTSP-1.03.tgz
http://iridia.ulb.ac.be/~mdorigo/ACO/downloads/ACOTSP-1.03.tgz

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 MAX-MIN Ant System
	2.2 Independent Roulette

	3 Vectorized Candidate Set Selection
	3.1 Instance Preprocessing
	3.2 Nearest neighbour List Construction
	3.3 Tour Construction
	3.4 Vectorized Candidate Set Selection (VCSS)
	3.5 Pheromone Update

	4 Experimental Results
	4.1 ACO Parameters and Problem Instances
	4.2 Execution Time
	4.3 Solution Quality
	4.4 Discussion

	5 Conclusion
	References

