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Abstract. In this paper we describe a general method for the conversion
of an equation-based model to an agent-based simulation. We illustrate
the process by converting a well-known recent case-study in epidemiol-
ogy (zombie infection), and show how we may obtain qualitatively similar
results, whilst gaining access to the many benefits of an agent-based im-
plementation.
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1 Introduction

Modelling is a fundamental technique for the study of a wide range of problems
[5, 6, 12]. Example application domains include disease epidemics [2], crowd be-
haviour [24] and traffic management [20]. Many models are based on systems of
differential equations, and examples include elastic deformation [30] and socio-
economic phenomena [8]). However, such models are often difficult to extend, do
not easily capture the notion of space, and fail to handle “mixed” populations
of entities [17, 19, 27, 31]. An alternative approach, which has gained popu-
larity in recent-years, is the agent-based method [18], where individual entities
(and their interactions) within a system are explicitly simulated computationally
[15, 21, 28]. There are many benefits to this approach, including extendibility,
ease of understanding for the non-specialist, consideration of spatial factors and
population heterogeneity [3, 7, 22, 31].

Although the continued rapid growth in computer power has made the agent-
based approach increasingly attractive, one common barrier to its adoption has
been the lack of a coherent process by which existing “traditional” models may be
expressed within this new framework. This is the main problem that we address
here. By describing in detail how an existing differential equation-based model
may be converted into an equivalent agent-based solution, and by comparing
the results obtained by each, we offer a convincing roadmap for the agent-based
implementation of mathematical models. We emphasise that the problem chosen
is simply used as a vehicle for illustrating the conversion process; we offer no
additional insights into the fundamental nature of epidemics.



The rest of the paper is organized as follows: We briefly motivate the work,
before presenting an existing epidemiological model based on “Zombie” infection,
which has been successfully used as an exemplar of the equation-based approach.
We then show how the components of this model may be mapped onto an agent-
based simulation framework, and compare the results obtained by each. In doing
so, we describe a generic “workflow” for the conversion of such models, which is
the main contribution of the paper. We conclude with a discussion of outstanding
issues, and suggest future lines of enquiry.

2 Background and Motivation

Mathematical models are used to describe many different systems of interest, and
facilitate analysis, prediction and optimisation [13]. Several different techniques
exist for this, including statistical models [11] and game theory [25]. Another
well-established modelling technique is the process of determining and subse-
quently evaluating a series of ordinary differential equations (ODEs). ODEs are
used to accurately describe changes in the value of a variable, or a number of
variables, with respect to time. These variables represent quantities which may
change over time, such as the size of bacterial populations [4], monetary amounts
[29] or plant mass [1], and there exist many numerical methods for approximating
solutions to systems of ODEs [10].

Unlike ODEs, which attempt to model using a “top-down” approach (the
behaviour of the system as a whole is described at the outset by a set of equa-
tions), an agent-based model (ABM) is populated with a number of autonomous
agents, that are each assigned a set of (often very simple) rules which govern
their behaviour. The microscopic actions and interactions of agents give rise to
macroscopic, “emergent” system-level behaviour (the “bottom-up” approach)
[7].

Many real world scenarios have been modelled using both the ODE approach
and the agent-based approach. In these cases it is common to compare the results
to determine the quantitative and qualitative differences between methods. This
is common in fields such as ecology, using, for example, a standard predator-
prey model [32]). In the molecular biology domain, a model for intracellular
chemical interactions is presented by Pogson et al. [26] with specific reference to
the advantages that ABM can offer. The impact of different network structures
on both types of method is considered by Rahmandad and Sterman [27], using
a common infectivity model, the Susceptible-Exposed-Infected-Removed (SIR)
model.

The obvious conclusion to be drawn from this short survey is that both ap-
proaches to modelling have their strengths and weaknesses. This, in itself, is not
a particularly helpful observation, so it is useful to then consider the particular
aspects of each where benefits may accrue. Several papers highlight the benefits
and limitations of each [19, 31, 17], which we now summarise. ODEs are often
very difficult to extend – equations can very rapidly become intractable [26].
They do not handle heterogenous populations very well. They are often difficult



for the non-specialist to understand (and thus construct), but are, however, of-
ten quick to compute. These disadvantages easily translate to the advantages
of ABM; additional model complexity is relatively trivial to incorporate within
ABM, fully heterogeneous populations are possible, and both the model design
and its results may be presented in a form that is easily understood by experts
in fields other than computation or mathematics [3]. ABM is not without draw-
backs, as obtaining results from such a model can often require a significant
amount of computational resource. While this problem is becoming less of an
issue as computational power increases and parallel architectures such as the
GPU become increasingly widespread, it is important to note that ABM can
take considerably longer (in terms of run time) to obtain results than a system
of ODE.

The process of creating and developing an ABM has been well-documented
[16], but there exists no clear guidance on how to exploit the wealth of ODE
models already available as a potential starting point for new, agent-based stud-
ies. That is, it is not immediately clear how “legacy” ODE models might be
converted into a more “useful”, agent-based form (in terms of being rendered
extendable, implementable on parallel computers, and so on). In the following
Section we describe a general approach for such conversions, and illustrate its
application by converting a well-known epidemiological model into an ABM.

3 Methodology

In this Section we consider the model of Munz et al. [23], and discuss the pro-
cess of converting this specific series of differential equations into an ABM. This
model uses the outbreak of a zombie infection as a case-study example of an epi-
demic. Within the model there exist three basic classes of individual: susceptible,
removed and zombified. These classes map closely to those of the Susceptible-
Infected-Removed model; indeed, the “zombie” model is presented as an ac-
cessible introduction to the SIR approach. Zombified individuals attack nearby
susceptible individuals in order to transmit the zombie infection. A susceptible
individual might successfully defeats a zombified individual with some proba-
bility. In these instances, the zombie infection is fought off, and the susceptible
remains unaffected, while the zombie moves to the removed class. Susceptible
individuals may die of natural, non-zombie-related causes, entering the removed
class without become zombified. Finally, there is a chance that members of the
removed population may be “resurrected” as zombies, reflecting a natural influx
of zombies from the deceased [14]. The model is described, as a series of ODE:

S′ = Π − βSZ − δS (1)

Z ′ = βSZ + ζR− αSZ (2)

R′ = δS + αSZ − ζR (3)

where Π represents some birth rate, α represents the rate at which zombies
are defeated by susceptibles, β represents the rate at which a zombie successfully



transmits the “zombification” infection, δ represents the natural death rate of
susceptible individuals, and ζ represents the rate at which removed individuals
resurrect as zombies.

The four cornerstones of our approach are Agents, Behaviours, Parame-
ters and Space. These components form the basis of any successful agent-based
model, and we now describe in detail how each is “extracted” from the set of
ODEs.

3.1 Agents

ABMs use different classes of agent to represent heterogenous populations. Class-
set extraction from an ODE system is achieved by defining each class as a popu-
lation within the ODE model. In our example, analysis of the ODE reveals three
classifications: S, R and Z (susceptible, removed and zombified, respectively).

3.2 Behaviours

These are derived from the equations themselves, unlike agents which are usually
derived from the subject of the equations. Any transaction within an equation
indicates a behaviour that must be considered. Behaviours often occur in pairs –
in our model, for example, as the number of susceptibles shrinks due to natural
deaths, the number of removed individuals grows. It is possible to identify all
behaviours that affect populations from examining the ODE alone. There are
two types of behaviour to note – those that occur spontaneously in a population,
and those that occur only when a population member interacts with a member
of either the same population or another population.

Behaviours that occur spontaneously are easily recognisable as terms which
observe the form αN , where α is some parameter, and N is a population. These
terms introduce a global population change; assuming the variables are positive,
a negative term indicates a population decrease, and a positive term indicates
a population increase. We observe such terms in two places within our example
system; the terms for removing susceptible agents due to natural death (δS),
and resurrecting zombified agents from removed agents due to natural infection
(ζR). The δS term is identified in the removed differential and is negated in the
susceptible differential, indicating the behaviour here can be phrased as “sus-
ceptible agents become removed agents at a given rate (δ).” The ζR term is
positive in the zombified differential and is negated in the removed differential,
indicating the behaviour can be phrased as “removed agents become zombified
agents at a given rate (ζ).” In this way, we slowly convert a set of equations
into “pseudo-code”. The second type of behaviour occurs when agents interact.
This is, of course, a common occurrence in studies of disease, and is modelled
using mass-action incidence [9]. The term for the number of susceptible agents
is defined as SZ. The only remaining terms are concerned with mixing: βSZ
(infection transmission) and αSZ (zombies defeated by susceptibles). The in-
fection transmission term (βSZ) term is negated for the susceptible differential,
and is positive for the zombified differential – the behaviour may therefore be



phrased as “when a susceptible individual encounters a zombified individual,
there is a chance (β) the susceptible becomes zombified.” The second term, for
zombies defeating susceptibles (αSZ), is negated for the zombified differential
and positive for the removed differential; that is, “when a susceptible individual
encounters a zombified individual there is a chance (α) the zombified individual
becomes removed.”

At this point, we observe that within traditional ODE systems, behaviours
which do not affect population sizes are often not considered at all. This is
discussed further in Section 3.4.

3.3 Parameters

Determining parameters is a case of examining the ODE system and extracting
the variables. Each variable should map to a parameter that is a potential con-
trol point for the ABM. This process is often quite straightforward, particularly
when performed after behaviour identification. Analysis of our differential equa-
tions yields five clear variables: birth rate (Π), zombie defeat rate (α), infection
transmission rate (β), rate of death by natural causes, (δ), and the resurrection
rate (ζ).

Parameters in the ODE operate slightly differently to their counterpart pa-
rameters in an ABM. Whereas rates in differential equations represent a pro-
portion of the population, they apply on a per-agent basis within an ABM. We
illustrate this subtle difference by taking the term δS as an example – rather
than taking the population of S and multiplying it by δ to calculate the number
of susceptibles that die to natural causes, we calculate this every “time step”
for each agent in a population. For each member of the susceptible population
there is a chance (δ) that the susceptible becomes removed. The net result is
the same, within some acceptable stochastic variation, in that roughly the same
proportion of susceptibles are removed each time step. Behaviours that occur
when two agents interact are calculated in exactly the same way, although these
are calculated on a collision-by-collision basis, rather than for a whole popula-
tion. There also often exist some parameters that must be considered, but are
not explicitly described within the differential equations. These parameters usu-
ally describe the initial state of the model (in this case, the initial number of
susceptible, zombified and removed individuals).

3.4 Spatiality

ODEs are spatially implicit; the zombie epidemic model uses mass-action inci-
dence to assume an evenly mixed population. ABM offer a much broader spec-
trum of possibilities for spatiality, and there are potentially many options for
a spatially explicit design that may not have been previously considered. Some
ABM may disregard the notion of spatiality, particularly when it is not relevant
to the problem scope, but our problem relies heavily on spatial factors. The
zombie infection is spread by proximity, and as such the locations of agents are
important, as is their ability to be considered mobile. In order to accurately



reflect the notion of mass-action incidence, we consider our environment to be
an open expanse in which agents are free to move about as desired. Several
additional parameters are required for spatial explicitness. Agents are now ca-
pable of movement, so we must now consider their speed. It may be appropriate,
depending on the model, to assign different speeds to different populations of
agents. In our example we set a speed at which susceptible agents move, and a
speed at which zombified agents move. This makes it possible to set the speed of
zombified agents below that of susceptible agents, in order to reflect the “sham-
bling” gait of the “traditional” zombie, or to the same value, in order to depict
faster, more contemporary zombies. Additional parameters are also required to
describe the environment (dimensions, internal structure, and so on).

3.5 Agent-Based Design

The conversion process, as we have seen, gives rise to a natural design. ABMs
are often depicted in flowchart form, so we give our final design in Figure 1.

Fig. 1. Design of the agent-based model

4 Implementation and Testing

In order to test the quality of our conversion, we implemented both our ABM
design and the original model [23] in a single Java application. We depict the



Fig. 2. Screenshot of the running application

running application in Figure 2, and the source code is available by request from
the authors1. The ABM results were averaged over 100 runs. In Table 1 we
supply the parameter values used in both implementations (those below the bar
are used only by the ABM).

Parameter Value

Population size 6000
Birth rate, Π 0.1%
Natural death rate, δ 0.1%
Resurrection rate, ζ 0.1%
Zombie defeat chance, α 5%
Infection transmission rate, β 100%

Environment size 500x500px
Infection range 10px
Initially infected 0
Initially zombified 1
Susceptible speed 1-3px/step
Zombie speed 1-2px/step

Table 1. System parameters

We select the parameter values as follows (note that the values are the same
for our implementations of both the ABM and the original model). Birth rate

1 Email: M.Amos@mmu.ac.uk



(Π), natural death rate (δ) and natural infection (resurrection) rate (ζ) were
all set to small values (0.1%). Death rate and birth rate are described as being
equal in the original model, the underlying assumption being that the “outbreak”
occurs over a short period of time. These three factors are not the key focus of
the model. Similarly, a high value for natural infection would model a scenario in
which “zombification” occurs “naturally” rather than through transmission. We
also selected a small value for “zombie defeat chance” (α) (5%), representing a
population unprepared for a zombie attack. Altering this parameter would allow
us to explore a scenario in which a population has some form of “resistance”.
Finally, transmission rate (β) was set to 100%. This gives a scenario in which the
zombie infection is always successfully transmitted. Since we are examining the
spread of zombie infection, this creates a simulation with a maximum possible
number of zombies due to transmission. Altering this parameter would allow us
to investigate the virulence of infection, perhaps more closely mirroring a realistic
scenario.

By comparing the plots obtained from both implementations (Figure 3), we
observe a qualitative similarity in terms of their outputs. We therefore assert
that the conversion process, from ODE to ABM, has preserved the inherent
fidelity of the original model.

5 Conclusion

In this paper we describe the process of converting an ordinary differential equa-
tion model into an agent-based model with no apparent loss of accuracy. This
framework unlocks a large library of models that have already been well re-
searched and carefully verified and validated. Crucially, agent-based versions of
these models will be more easily extended, and amenable to implementation on
parallel architectures. Future work will use this approach to investigate a range
of such models, which will, in turn, inform future refinements of the conversion
process itself.



Fig. 3. Model comparison. (Top) ODE implementation; (Bottom) Agent-based imple-
mentation.
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