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Abstract. In bacterial populations, cells are able to cooperate in order
to yield complex collective functionalities. Interest in population-level
cellular behaviour is increasing, due to both our expanding knowledge
of the underlying biological principles, and the growing range of possi-
ble applications for engineered microbial consortia. The ability of cells
to interact through small signalling molecules (a mechanism known as
quorum sensing) is the basis for the majority of existing engineered sys-
tems. However, horizontal gene transfer (or conjugation) offers the pos-
sibility of cells exchanging messages (using DNA) that are much more
information-rich. The potential of engineering this conjugation mecha-
nism to suit specific goals will guide future developments in this area.
Motivated by a lack of computational models for examining the specific
dynamics of conjugation, we present a simulation framework for its fur-
ther study.

(This paper was first presented at the Spatial Computing Workshop
of the 13th International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS), Paris, France, May 5–9 2014. There were no
published proceedings).

1 Introduction

“Imagine a discipline of cellular engineering that tailor-makes biological cells to
function as sensors and actuators, as programmable delivery vehicles for pharme-
ceuticals, or as chemical factories for the assembly of nanoscale structures” (Abel-
son, et al., talking about amorphous computing, in the year 2000 [1]).

This growing discipline is now known as synthetic biology [3,12,22], and
researchers in the field have successfully demonstrated the construction of sev-
eral types of device based on populations of engineered microbes [29]. Recent
work has focussed attention on the combination of single-cell intracellular devices
[5,17] with intercellular engineering, in order to build increasingly complex sys-
tems [6,11]. As Beal argues, “Biological systems can often be viewed as spa-
tial computers: space-filling collections of computational devices with strongly
localized communication.” [9] This is precisely the view of living cells that we
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take here; that is, microbes may be engineered to both implement some “pro-
gram”, and share information with other cells in order to implement distributed
computations. This concept has already been successfully demonstrated in the
laboratory (see [2] for a review), with applications including programmed pat-
tern formation [8], edge detection [35], distributed evaluation of Boolean logic
[32,36], and a synthetic “predator-prey” ecosystem [7]. These papers (and many
others) clearly demonstrate how engineered living cells extend, beyond tradi-
tional silicon-based machines, the definition of what it means to “compute”.

To date, most work on engineered cell-cell communication has focussed on
quorum-sensing (QS) [4], which may be thought of as a communication proto-
col to facilitate inter-bacterial communication via the generation and receiving
of small signal molecules. However, recent studies on DNA messaging [31] high-
light the importance and utility of transferring whole sets of DNA molecules from
one cell (the so-called donor) to another (the recipient). Bacterial conjugation
is a cell-to-cell communication mechanism [13,14] that enables such transfers to
occur. We have recently proposed the notion of conjugation computing: multicel-
lular computation that uses conjugation as its fundamental mode of information
transfer [19]. In this paper, we expand on this result, and present full implemen-
tation details of our simulation platform for conjugation computing. DiSCUS
(Discrete Simulation of Conjugation Using Springs) realistically simulates (in a
modular fashion) both intracellular genetic networks and intercellular communi-
cation via conjugation. To our knowledge, this is the first such platform to offer
both of these facilities. We first review previous work on cell simulation, before
presenting the details of our model. We validate it against previous experimental
work, and then discuss possible applications of our method.

2 Previous Work

The rapid development of bacterial-based devices is accompanied by a need for
computational simulations and mathematical modelling to facilitate the charac-
terisation and design of such systems. A number of platforms and methods are
available for this purpose. Agent-based models (AbMs) are widely used [20], and
were first used to study microbial growth in BacSim [26]. Continuous models
have also been proposed [30], and recent developments make use of hardware
optimisation, by using GPUs (Graphics Processing Units) in order to scale up
the number of cells simulated [33].

Because of the complexity of the system under study, several computational
platforms focus on either specific cellular behaviours (e.g., bacterial chemotaxis
[15], morphogenesis of dense tissue like systems [24]) , or on specific organisms
(e.g., Myxococcus xanthus [23]). Platforms that incorporate cell-cell communica-
tion generally focus their attention on quorum-sensing. Simulations of conjuga-
tion do exist, but these consider cells as abstracted circular objects [27,34]. We
demonstrate in this paper how a consideration of the shape of cells is an essen-
tial feature for understanding the conjugation behaviour of the population. We
now describe our model for bacterial growth, in which conjugation is handled
explicitly.
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3 Methods

We apply an individual-based modelling approach [28] to the study of conjuga-
tion dynamics. This models each cell as an individual, mobile entity, each of
which is subject to physical forces arising from contact with other cells and the
environment (e.g., surfaces). Each cell has a number of different attributes, listed
in Table 1, which correspond to various physiological states and characteristics.

Table 1. Cell attributes.

Attribute type Definition

shape pymunk.Shape Shape of the cell

program [m0 . . . mi] List of the i regulatory network molecules (m)

elongation [int,int] Elongation values (one per cell pole)

position [x,y] Coordinates of centre point, x and y

speed float Velocity

conjugating Boolean Conjugation state

plasmid Boolean Program state (present/not present)

role int Donor (0), recipient (1) or transconjugant (2)

partner int Role of plasmid transfer cell

Bacteria are modelled as rod-shaped cells with a constant radius (parameter
width in Table 2). Elongation processes occur along the longitudinal axis, which
has a minimum dimension of length, and division takes place whenever the cell
measures 2*length. The division of a cell into two new daughter cells is also
controlled by max overlap, which monitors the physical pressure affecting each
cell; if the pressure exceeds this parameter value, the cell delays its growth and
division. Thus, a cell with pressure grows slower than without it. The global para-
meter growth speed (Table 2) also helps us simulate cell flexibility in a realistic
fashion. This parameter defines a “cut off” value for the number of iterations in
which the physics engine must resolve all the current forces and collisions. Thus,
smaller values will cause the solver to be effectively “overloaded”, and some col-
lisions may, as a result, be partially undetected. This means that cells behave as
flexible shapes, which gives the simulation a more realistic performance.

Horizontal genetic transfer (or conjugation) is modelled using an elastic
spring to connect donor and recipient cells [25]. Parameter c time defines the
duration of that linkage, which determines the time in which the DNA is trans-
ferred. The springs are constantly monitored to ensure that they physically
connect both cells during conjugation. Importantly, during conjugation, the res-
olution of collisions involving relevant cells considers the forces produced by the
spring connection, in order to calculate the final movement of the bacteria. By
coupling cells in this way, we obtain realistic population-level physical patterns
that emerge as a result of large numbers of conjugation events. This agent-based
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Table 2. Global simulation parameters.

Parameter Definition

screenview Size of the simulated world

width Width of each cell (lattice squares)

network steps Number of steps of the ODEs per Gt

number donors Initial number of donor cells

real Gt Real doubling time of the studied cells (minutes)

Gt Doubling time of the simulated cells (iterations)

number recipients Initial number of recipient cells

length Length of each cell (lattice squares)

max overlap Pressure tolerance of cells

bac friction Friction coefficient (Coulomb friction model)

spring damping The amount of viscous damping to apply

bac mass Mass of the cell (for calculating the moment)

c time Duration of the conjugation process

p d Probability of conjugation event (donors)

p t1 Probability of conjugation event (transconj.1)

p t2 Probability of conjugation event (transconj.2)

spring rest length Natural sprint expansion/contraction

growth speed Iterations between elongation processes

spring stiffness The tensile modulus of the spring

cell infancy Time lag (percentage)

pymunk steps Update the space for the given time step

pymunk clock ticks Frame frequency (FPS - frames per second)

algorithm has an iteration-driven structure, where - after initialisation of the
main global parameters - it repeatedly performs the following steps for each cell:
(1) Update springs (position and timing); (2) Perform cell division (if cell is
ready); (3) Elongate cell (every growth speed steps); (4) Handle conjugation;
(5) Update physical position.

Conjugation decisions (step 4) made by cells are driven by three sequential
steps: (1) Decide, following a probability distribution, whether or not to conju-
gate (one trial per iteration); (2) If conjugating, randomly select a mate from
surrounding bacteria (if present); (3) If valid mate is found, effect conjugation
transfer.

The discrete probability distribution used for the conjugation process is
C(N, p, c time), where N is the number of trials in a cell lifetime (width *
length), p is the success probability in each trial (with p ∈ [0. . .1]) and c time
is the time interval during p = 0.0 (i.e., when the cell is already conjugating).
As stated in [34], p can vary, depending on whether the cell is a donor (p d),
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a transconjugant that received the DNA message from a donor (p t1), or a
transconjugant that received the DNA from another transconjugant (p t2).

Intracellular circuits (that is, any new genetic components that are intro-
duced into the cells in order to implement a computation) are modelled sepa-
rately, and then held in each cell by storing the state (i.e., protein concentrations,
etc.) of the circuit in an attribute of the cell (program). Thus, there are effec-
tively as many copies of the circuit as cells in the simulation (the number of
cells we currently handle can range from single digits to around two thousand
before we hit significant performance issues). This circuit simulation is imple-
mented in a modular fashion, so that the internal cellular “program” may be
easily replaced with any other. In this paper we demonstrate the principle using a
two-component genetic oscillator as the DNA message that is exchanged through
conjugation. The ordinary differential equations (ODEs) for this circuit are:

dx

dt
= ∆

(
β

1 + αx2

1 + x2 + σy2
− x

)
(1)

dy

dt
= ∆γ

1 + αx2

1 + x2
− y (2)

which are detailed in [21], as well as the meaning and value of the parameters
(we use the same values in the code provided). We recently used our software
platform to investigate the spatial behaviour of a reconfigurable genetic logic
circuit (without conjugation) [18], which demonstrates (1) how it may easily be
modified to accommodate different sets of equations, and (2) how it may be used
as a “general purpose” cell simulation platform, with conjugation “turned off”.
The actions controlling the growth rates of cells occur on a longer time scale
than the integration steps that control molecular reactions (as Eqs. 1 and 2).
In order to ensure synchronisation, the parameter network steps defines the
number of integration steps of the ODEs that run per Gt. Thus, a number of
network steps/Gt integration steps will update the attribute network of each
cell every iteration. Other important physical parameters listed in Table 2 are
spring rest length, spring stiffness and spring damping; these are three
parameters to model the material and behaviour of the bacterial pilus (i.e. the
spring) during conjugation. Parameter cell infancy is a delay period, during
which a cell is considered to be too young to conjugate (as observed experimen-
tally [34]). Parameters pymunk steps and pymunk clock ticks are used by the
physics engine to update the world, and may be adjusted by the user in order
to alter the performance of the simulation (machine dependent). Parameters
bac mass and bac friction play a role in collision handling. Our platform is
written in Python, and makes use of the physics engine pymunk (www.pymunk.
org) as a wrapper for the 2D physics library Chipmunk, which is written in C
(www.chipmunk-physics.net/). As cells are represented as semi-rigid bodies in a
2D lattice, pymunk handles the physical environment on our behalf. For mon-
itoring purposes, parameters Gt and real Gt allow us to stablise the relation
between iterations and clock minutes: minute = Gt/real Gt (units: iterations).
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4 Results

We now describe the results of experiments to validate our conjugation model,
using three sets of simulations. We first validate individual conjugation dynamics;
then we validate the biomechanical properties of the simulation; the final set of
experiments studies the effects of mixing on conjugation dynamics.

4.1 Conjugation Dynamics

The objective of the first set of experiments is to validate the software in terms
of conjugation dynamics. For that purpose, we first focus on conjugation, using
images of a Pseudomonas putida population (Fig. 1A) extracted, with permis-
sion, from [34]. These show donor cells (dark red) growing in contact with recip-
ients (yellow). The DNA information they share after conjugation makes the

Fig. 1. Validation of cell movement and conjugation dynamics using real data. (A):
Figure extracted from [34] where a colony of Pseudomonas putida is divided into dark
red donor cells (DsRed), yellow recipient cells (YFP) and transconjugants, expressing
both yellow and green light (YFP and GFP). The upper row shows the transconjugant
signal, and the bottom row shows the whole community. (B and C): Simulation results.
Two simulations of similar colonies are recorded over exactly the same time intervals
(min). The colours of the cells match the colours observed in (A). Graphs (D), (F)
and( H) are extracted from [37], and show experimental results of Escherichia Coli
growth regarding density, velocity and ordering (respectively). Graphs (E), (G) and (I)
correspond to our simulation results, using similar conditions to [37], for the same
parameters (density, velocity and ordering respectively). Tests 1, 2 and 3 in graphs
correspond to different spatial distribution of cells inside the microfluidic chanel (details
in text). This figure first appeared as Supporting Information Figure S7 in [19] (i.e.,
not as part of the main paper) (Color figure online).
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DiSCUS: A Simulation Platform for Conjugation Computing 7

transconjugant cells display GFP (green fluorescent protein). We adjusted the
parameters of our simulations until the behaviour matched the images of real cells
(two simulations shown: Figures 1B and C), in terms of both time-series behav-
iour and the type of physical pattern displayed. The algorithm for this adjust-
ment used information on the number of transconjugants, donors and recipients
at a particular time (taken from images of actual colonies), and then explored
(in the simulation) the space of conjugation probabilities until values were found
that gave rise to the observed numbers). It is important to note that the dif-
ferential probabilities of conjugation of donors and transconjugants (higher in
the latter) causes directional spreading of the DNA information. After the first
transconjugant appears (160 min), the newly-formed transconjugants appear -
most probably - in the immediate neighbourhood. The final parameter values
used to reproduce this experiment are: width=5, length=15, growth speed=30,
p d=0.001, p t1=0.02, p t2=0.05 and c time=450 (the rest of the parameters
are as defined in the DiSCUS distribution). Movie DemoConjugation1 (found
in the project repository) shows a simulation of a similar experiment where the
transconjugants do not act as new donors.

4.2 Biomechanical Properties

The second set of validation experiments focuses on biomechanical movement.
We use experimental data from [37], which describe an Escherichia coli colony
growing in a microfluidic channel (30 * 50 * 1 µm3) (Figs. 1D, F and H). Using
exactly the same setup (width=5, length=24, growth speed=30) we highlight
how different initial positioning of cells inside the channel can affect the final
result (test1, with more cells observed in the centre than at the edges; test2
with all cells initially in the centre; test3 with all cells homogeneously spread
along the channel). Density graphs (Figs. 1D and E) show the increasing curve
as the channel becomes more populated (results vary depending on which area
is considered for monitoring). Velocity gradients (Figs. 1F and G) depict the
differential velocity across the longitudinal axis of the channel with respect to
the centre (we see negative values when the cells in the centre move faster than
the rest). The difference in the y axis is due to our considering different spacial
intervals in the velocity gradient calculation. Ordering graphs (Figs. 1H and I) are
based on calculating the cosine of a cell’s angle with respect to the longitudinal
axis of the channel (e.g. angle 0, cos(0)=1, completely aligned). As time increases,
we see that the cells tend to align themselves.

4.3 Effects of Mixing

Conjugation behaviour within a population may be altered in different ways to
achieve different behaviours, depending on the desired application. For exam-
ple, in the previous experiments described in this paper, transconjugants are
unable to act as recipients (simulating a radical entry exclusion [16]). That is
to say, they will not receive more plasmids (genetic circuits) from either donors
or transconjugants. Furthermore, we may also engineer the transconjugants to
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Fig. 2. Effects of manual mixing on conjugation frequency. (A): Recipient-trapping
behaviour of a population with donors (red), transconjugants (green) and recipients
(yellow). Two snapshots depict clearly-observed clusters. (B): Population after random
mixing, where the clusters are automatically dissolved. (C): Graph showing conjugation
frequencies (Y = T/(R + T)) of 560-minute experiments (ratio D/R = 50%). Blue
bars represent Y on an untouched population, while red bars represent Y when the
population is mixed at 420min. The two sets of bars correspond to experiments with
different cell dimensions (1x3 -left- and 1x2 -right). Error bars show variation across 15
experiments of each class. This figure first appeared as Supporting Information Figure
S8 in [19] (i.e., not as part of the main paper) (Color figure online).

stop acting as new donors [14], so that only the original donors have the ability
to transfer the DNA message. Mixing of the cell population becomes essential
in this last scenario, in order to ensure maximal contact between donors and
recipients.

Investigations of how manual mixing can affect conjugation frequencies are
described in in [14], using an Escherichia coli population. We now reproduce those
results using our software, and give valuable insight into the reasons for that
behaviour: the isolation of the recipients. For that purpose (Fig. 2) we grow a
population of donors (D, red) and recipients (R, yellow) in which the ratio D/R
is 50 % and the transconjungants (T, green) are unable to act as new donors.
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The frequency of conjugation, Y, is measured as Y = T/(R + T). The graph in
Fig. 2C shows the frequency after 560 min of untouched populations (not mixed,
blue bars) and populations that have been manually mixed at 420 min (red bars).
The difference that the mixing produces is based on the isolation of the recipients
in untouched populations. Figure 2A shows two different occasions in which clus-
ters of recipients are formed, where the transconjugants do not allow donors to
reach new possible mates. After the population is completely “shuffled” (Fig. 2B),
the clusters are dissolved, and new pairs of donor-recipient can arise in the new
topology.

An interesting result from Fig. 2C is the fact that the smaller the size of
the cell, the higher results we observe for conjugation frequencies. This may
be due to the fact that smaller cells are able to slip through physical gaps,
and the biomechanical ordering of the population becomes more “fuzzy”. This
underlines the importance of considering the physical shape of cells, since circle-
shaped cells would not give valid results. Importantly, all of these results are
entirely consistent with the behaviour observed in the laboratory study [14].

5 Discussion

The conjugation model presented here is the first agent-based model to explic-
itly simulate conjugation processes with growing rod-shaped cells. Full validation
against real data is performed, which shows the capacity of the software to repro-
duce observed behaviour. In addition, the mixing study offers valuable insights
into the design of multi-strain populations. The software also allows for genetic
programs to be installed inside cells; the potential for horizontal gene transfer to
recreate distributed information processing within a microbial consortium is of
significant interest in synthetic biology/spatial computing [10], and the software
presented will aid the design and testing of systems before their wet-lab imple-
mentation. Possible future work may focus on further validation of the model
through (1) studying the frequency of conjugation in different bacterial strains,
and under different conditions, (2) studying the effect of the cell’s shape and/or
doubling (reproduction) time, and (3) investigating mixing effects caused by the
topology of the region(s) bounding the cell colony. The computational cost of
the simulations may also prove to be a limiting factor, so it may be useful to
investigate parallelisation of the code (either on GPUs, or by using a platform
such as MPI). This may, in the future, open up the possibility of using the code
for three-dimensional biofilm studies.

Simulation code and movies are available at http://www.bactocom.eu.

Acknowledgments. This work was supported by the European Commission FP7
Future and Emerging Technologies Proactive initiative: Bio-chemistry-based Informa-
tion Technology (CHEM-IT, ICT-2009.8.3), project reference 248919 (BACTOCOM).

A
u

th
o

r 
P

ro
o

f

http://www.bactocom.eu


10 A. Goñi-Moreno and M. Amos

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr, T.F., Nagpal,
R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Commun. ACM
43(5), 74–82 (2000)

2. Amos, M.: Population-based microbial computing: a third wave of synthetic biol-
ogy? Int. J. Gen. Syst. 43(7), 770–782 (2014)

3. Andrianantoandro, E., Basu, S., Karig, D.K., Weiss, R.: Synthetic biology: new
engineering rules for an emerging discipline. Mol. Syst. Biol. 2, 0028 (2006)

4. Atkinson, S., Williams, P.: Quorum sensing and social networking in the microbial
world. J. R. Soc. Interface 6(40), 959–978 (2009)

5. Ausländer, S., Ausländer, D., Müller, M., Wieland, M., Fussenegger, M.: Program-
mable single-cell mammalian biocomputers. Nature 487(7405), 123–127 (2012)

6. Bacchus, W., Fussenegger, M.: Engineering of synthetic intercellular communica-
tion systems. Metab. Eng. 16, 33–41 (2013)
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