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A Genetic Algorithm for the Zen Puzzle Garden Game

Martyn Amos · Jack Coldridge

Abstract In this paper we present a novel genetic algorithm (GA) solution to
a simple yet challenging commercial puzzle game known as Zen Puzzle Garden
(ZPG). We describe the game in detail, before presenting a suitable encoding
scheme and fitness function for candidate solutions. We then compare the perfor-
mance of the genetic algorithm with that of the A* algorithm. Our results show
that the GA is competitive with informed search in terms of solution quality, and
significantly out-performs it in terms of computational resource requirements. We
conclude with a brief discussion of the implications of our findings for game solving
and other “real world” problems.
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1 Introduction

Zen Puzzle Garden (ZPG) [17] is a one-player puzzle game involving a Buddhist
monk raking a sand garden. It is inspired by Japanese garden design, and one
common feature of such gardens is a flat region of sand or small pebbles, which is
raked into a pattern. ZPG is one example of a transport puzzle; these are problems
that involve the player moving entities around a given domain (e.g., boxes around
a warehouse), starting at some initial configuration, until they attain pre-defined
goal conditions. Entities must move according to the constraints of the puzzle, and
may only move between connected positions (that is, an entity may not be “lifted”
off the board and replaced at a position perhaps far from its initial location). A
graphical representation of the problem may use vertices to represent the set of
positions an entity may occupy, with connecting edges determined either from any
explicitly named connections, or from those implied by arrangement on the board
or within a grid.

The rest of the paper is organized as follows: We first describe related work in
Section 2 and give an in-depth description of the problem in Section 3, before
describing two solution methods (genetic algorithm and A*) for ZPG in Section 4.
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Experimental results are presented in Section 5, before we conclude with a brief
discussion of the implications of our findings in terms of broader applicability.

2 Previous work

Many transport puzzles require the player to make a trip around a board between
given start and end positions, and puzzles may be extended via the introduction
of objects or obstacles to the board, which must be collected or moved to satisfy
given constraints. A well-studied example of the transport puzzle is Sokoban [5,
11]. In this game the player takes control of a warehouse keeper whose job it is to
push boxes around a maze and into designated target locations; only one box may
be pushed at any one time, and boxes may not be pulled. The challenge of this
puzzle is derived from this latter condition, since if a box is pushed into a corner
of any construction then the game is lost. Sokoban is known to be NP-hard [5].
Various AI-based techniques have been applied to its solution, including multi-
agent systems [1], abstraction and decomposition [2], embedding domain-specific
knowledge [12], and heuristic search [13]. The applicability of such methods to
ZPG is, however, not clear, since the problem features additional complicating
factors (described in the next Section).

According to an in-depth search of the literature, no attempts to automatically
solve this particular problem have been previously documented. We believe the
genetic algorithm (GA) [6] to be a good candidate method for its solution. We
therefore describe preliminary work on applying this method to a new variant of
the transport problem. We present a comparison between the GA and a “base-
line”, search-tree-based method, in the hope that this will motivate further study
in the future.

3 Zen Puzzle Garden

The ZPG game takes place on a garden board comprised of a two-dimensional grid
of sand squares surrounded by a perimeter region. Boards may also contain rocks,
leaves and ornaments, the purpose of which we explain shortly. Two of the boards
supplied with the game [17] are partitioned into different sections separated by
path regions; these are not considered here. The objective of the game is to move
a monk character around the garden, causing him to completely rake the available
surface. A puzzle board is completed when all initially empty squares (i.e., any
sand square not covered by either a rock or an ornament) have been raked and
the monk has stepped onto the perimeter region. This last condition is necessary,
as a square is not considered to be raked until it has been vacated.

The monk always begins a game at the same point on the perimeter, regardless
of the board being played, and the following rules apply:

– The monk may move freely around the perimeter region.
– When on the sand the monk may only move within the von Neumann neigh-

bourhood (i.e., no diagonal movements are allowed).
– The perimeter is left by entering the sand on any un-raked (i.e., empty) square.
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Fig. 1 Example Zen Puzzle Garden board.

– Vacating an empty sand square causes that square to be permanently raked.
The monk cannot move from the perimeter onto an empty sand square and
then immediately back onto the same perimeter square, as this is considered a
“step back”.

– Once moving on sand, the monk continues to move in a straight line until
he encounters either the perimeter (in which case he moves onto it), a raked
square or an object (in both cases, he stops moving). The monk may not turn
corners during a single move while moving on sand. These two rules are central
to the challenge of the game – if the monk could be moved over the sand on a
square-by-square basis then most boards would be trivial to solve.

– Any moveable objects may only be pushed onto an empty sand square. They
may not be pushed off the garden into the perimeter region. A single move
pushes such an object one square, if possible. When pushing an object the
monk does not continue moving until he is no longer able to (unlike in normal
movement), but the monk may use multiple moves to push an object a number
of squares.

– The current game ends if the monk is moved into a position such that he is in
a “dead end” (i.e., unable to make a legal move).

Objects may be one of three types:

– Rocks are placed in a fixed position at the start of the game, and may not be
moved.

– Ornaments also start in the same place at the beginning of each game. They
may only be pushed into an empty square, and not into the perimeter (see
above).

– Leaves are coloured either yellow, orange or red, and must be collected (i.e.,
moved over) in that order, at which time they are removed from the board.
An orange or red leaf is classed as an immoveable object until the preceding
leaves have been collected.
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Fig. 2 Graph-based representation of ZPG board.

An example board is depicted in Figure 1. In this situation the monk is half-
way through completing a move, and will completely rake the current column
before moving onto the perimeter.

Previous work [4] suggests that ZPG is likely to be NP-complete. Although a
formal proof has yet to be published, we are aware of evidence that this is, indeed,
the case [10]. The authors of [4] study “pushing block” puzzles (like Sokoban), and
introduce variants in which blocks must slide their maximal extent when pushed,
and where a player’s path must not cross itself. These variants are demonstrated
to be NP-hard.

4 Two methods for ZPG

In this section we describe two solution methods for ZPG; a search-tree method and
a genetic algorithm (GA). As a single board may admit several different solutions,
in what follows, we seek the optimal (i.e., shortest) sequence of moves needed to
solve each puzzle instance. We first give a representation scheme for the game,
before describing a generic simulator we built for the game. We then give details
of the A* and GA algorithms.

4.1 Representation

In Figure 2, we show a graph-based representation of the ZPG board. Perime-
ter tiles are represented by coloured nodes, and sand tiles labelled according to
their coordinated on the board. Entities representing the player and obstacles may
occupy vertices on the graph or travel (where allowed) along connecting edges be-
tween them. Although not shown in Figure 2, the monk may move freely between
perimeter nodes (that is, the perimeter subgraph is fully connected).

Standard game theory [20] defines a game tree as a graph in which nodes rep-
resent game states, with each branch corresponding to a move. The complete game
tree for a problem is the game tree starting at the initial state and containing
every possible move. Terminal nodes represent the possible states that may end
the game; either a goal state or deadlock. The branching factor is the number of
children at each node; an exhaustive search of the tree will follow every branch
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at every node and the total number of vertices will increase exponentially to the
depth in the tree.

A game tree is an example of state-space search whereby successive configura-
tions or states of an instance are considered, with the goal of finding a state with
a desired property. Obtaining a complete game tree for a problem can be very
computationally expensive [9], and has resulted in search algorithms such as A*
playing an important role in recent research.

4.2 Simulator

Attempts to solve commercial games are often hampered by the reluctance of the
authors to release commercially-sensitive source code. Therefore, in order to test
candidate scripts against game boards, we use the same fundamental approach
as Kendall and Spoerer [14], which is to write a simplified version of the game
engine. This engine retains the essential characteristics of the game in terms of its
rules, but omits the graphical user interface and other “playability” features. A
representation of the game state is modified by an external controller program, and
moves and their results may therefore be assessed without access to the source of
the main game itself. Care is taken to ensure that all restrictions listed in Section
1 are enforced. The same simulator is used by both the genetic algorithm and
informed search.

To determine the quality of a (partial) solution to a given garden, the simulator
includes an AreaF itness() method to calculate and return a value describing how
close it is to a full solution. This method compares the unraked (available) area of
the garden before and after a given path has been explored. By dividing the number
of unraked tiles after the path has traversed the garden by the initial number of
unraked tiles, a quality metric may be obtained. As the value approaches zero the
proportion of the garden that has been raked rises, with a value of zero indicating
the path has covered all available tiles.

4.3 A* solution

The A* algorithm is an extensively studied best-first search method. It is best-first
in that it takes an informed approach when deciding which node is most likely to
provide the least-cost distance to a goal state; the order in which nodes are visited
is determined by a distance-plus-cost heuristic, given by f(x) = g(x)+h(x), where:

– g(x): The shortest distance from the root node to the node being evaluated;
– h(x): The estimated distance from the node being evaluated to a goal state.

The heuristic function should be optimistic in that it will never overestimate
the cost of a path from the root node to a goal state; as the algorithm will never
overlook the possibility of a lower-cost path it is therefore admissible. Hart et al.

[8] first discussed this algorithm in 1968, then calling it just Algorithm A. It has
since been shown by Dechter and Pearl [3] to be optimal in that it considers fewer
nodes than any other admissible search algorithm with the same heuristic.

The A* algorithm displays characteristics of the breadth-first search; it is com-
plete in that it will always return a solution if one exists, and it will also visit
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all equal-cost vertices at a given depth before continuing further along a path at
greater cost. Many enhancements have been made to the basic algorithm that allow
it to be tailored to the problem domain, such as iterative deepening and pattern
databases. These enhancements have provided some impressive reductions in the
search effort required to solve challenging problems such as Rubik’s Cube [16]. The
algorithm is implemented using a priority queue, the ordering determined by the
heuristic function, with a lower value indicating a better candidate. The following
pseudo-code illustrates the basic operation of the algorithm:

function A* (start, goal) {

add start to open_queue

while open_queue not empty {

x = poll open_queue for lowest f(x)

if x == goal {

return x

}

else {

for y in neighbours(x) {

if y not in closed_list and y not in open_queue {

add y to open_queue

}

}

}

add x to closed_list

}

return not_found_ERROR

}

The heuristic function comprises the distance from the root node, g(x), given
by the number of moves completed, and the estimate h(x) is provided by the
AreaF itness() method described earlier.

The algorithm is implemented with a conditional loop which polls the fittest
state from the open queue and proceeds to create leaf nodes for each move available
from that state. As the nodes are created their quality is analysed, and they are
inserted into the queue accordingly. Once the first complete solution has been
found the queue is pruned of all nodes requiring a greater number of moves, and
only nodes with an move count less than or equal to the best solution are inserted
into the queue.

This process is repeated until all nodes in the queue have been examined,
at which point the solutions found are analysed and the set of unique solutions
returned. Pruning reduces the completeness of the solution set generated by the
algorithm for solutions requiring more than the optimal number of moves, but
this behaviour is acceptable, as only the optimal solutions are of interest in this
investigation.



Zen Puzzle Garden 7

4.4 Genetic algorithm solution

Genetic algorithms [6] have been studied extensively in the context of combinato-
rial optimisation problems. With respect to the current problem, Hong et al. [9]
discuss the application of genetic algorithms to game search trees, specifically that
of the Latin square problem devised by Leonhard Euler. Mantere and Koljonen
[18] perform a similar analysis of the efficacy of genetic algorithms for devising
and solving Sudoku problems.

When choosing the representation for our GA, we first consider the basic op-
eration of the game. A successful move consists of the selection of a point on the
garden perimeter and a transition onto the garden surface, followed by zero or
more in-move choices (the number of choices to be made is only non-zero if a
raked square or object is encountered), leading to the monk finishing back on the
perimeter. If a choice of direction is required at a raked square, then at most two
options are available, as the monk can neither move backwards nor onto the raked
square in front of him. If an ornament is encountered, then the monk must choose
a number of times (≥ 0) to push it in the current direction.

For a rectangular board of dimension x × y, there are C = 2x + 2y unique
starting points on the perimeter, ordered by starting at 1 at the north face of the
upper-left square and moving “clockwise” to the west face of the same square. C
is therefore a measure of the “circumference” of the board. We assume, based on
extensive personal experience of playing the game, that no move will contain more
than 20 direction choices or opportunities to push, and we therefore define m as
the maximum number of moves allowed. A candidate solution is naturally made
of a sequence of clauses

(c1, p1,1, d1,1, d1,1, . . . , p1,8, d1,8), . . .
(ci, pi,1, di,1, . . . , pi,8, di,8), . . .
(cm, pm,1, dm,1, . . . pm,8, dm,8),

where each clause encodes a move, 1 ≤ c ≤ C, 1 ≤ pi,j < max(x, y) − 1 and
di,j ∈ {1, 2}. Values for ci encode a starting point on the board perimeter. Values
for pi,j encode a distance to push an object (if encountered). We use an indirect
encoding scheme for values of di,j to encode direction choices, using the notion of
available moves. When a move is required, the list of available moves is constructed
and one of two chosen (remembering that only two moves will be possible), ac-
cording to the value of di. This genome sequence therefore encodes a “script” of
moves, which is then fed into the simulator for evaluation.

4.4.1 Fitness Function

The fitness function is given below. It accepts a sequence of moves, and returns
the overall fitness of the sequence based on (a) its length, and (b) the quality of
the solution it encodes. Fitness values are in the range 0 . . . 500. GENE LENGTH

is equivalent to m, above, and is set to a default value of 20. Moves represents
the number of valid moves executed. The first component of the fitness function
therefore rewards short sequences.
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fitness()

{

fitness=0 ;

fitness += (GENE_LENGTH-Moves)*

(200/GENE_LENGTH)

if (AreaFitness>0)

fitness += (1-AreaFitness)*200

else if (garden is full solution)

fitness += 300

else

fitness = 0

}

The second component of the fitness value is calculated by the AreaF itness()
function; a complete solution gains an absolute value of 300 for this component; if
deadlock is reached (i.e., the monk is unable to move) a value of zero is awarded
for this component.

5 Results

We tested both methods on 24 different ZPG game boards, including one engi-
neered to have no solution. We selected nine “retail” boards (supplied with the
game, labelled R1-R9) and constructed an additional 14 “test” boards (T1-T14).
We could not simply select all retail boards, because we were restricted to us-
ing smaller boards due to the resource limitations we imposed (an informed search
would be terminated if it either consumes more that 100Gb of disc space or runs for
longer than 72 hours). Boards were selected/constructed in order to be “tractable”
in this sense, but we also ensured that the full range of board features was repre-
sented in our test suite1

We initially ran both methods on 30 different ZPG game boards. Of these, 15
were “retail” boards (i.e., supplied with the game), and 15 were hand-designed by
us. Of the latter, one “illegal” board was specifically engineered to have no solution,
in order to demonstrate the exhaustive nature of the A* algorithm. The other 14
non-retail boards were designed to represent the range of obstacles contained in all
64 retail boards. Of the retail boards, eight were selected specifically because we
expected them to exceed (due to their size) the A* resource limits that we impose.
The 14 hand-designed boards were designed to be “tractable” in this respect. The
boards used ranged in size from 6×4 to 9×6.

The genetic algorithm (GA) was implemented in Java, using the JGAP [19]
Java package; it used a constant population size, rank-based selection (with 95% of
the population considered for the next generation), and simple one-point crossover.
The parameter values used were as follows:

1 The board files, along with the code for the simulator, are available on request from the
corresponding author.
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Instance Opt. GA best GA av. GA excess %
T1 3 3 3.38 12.67
R1 4 4 4 0
R2 4 4 4 0
T2 4 4 4.12 3.0
T3 4 4 4 0
T4 4 4 4.62 15.5
T5 4 4 4.24 6.0
R3 5 5 5.14 2.8
R4 5 5 5 0
R5 5 5 5 0
R6 5 5 5 0
T6 5 5 5.06 1.2
T7 5 5 5.94 18.8
T8 5 5 5.88 17.6
T9 5 5 5.76 15.2
T10 5 5 6.36 27.2
T11 5 5 5.08 1.6
R7 6 6 11.41 90.17
R8 6 6 6.7 11.67
T12 6 7 8.98 49.67
T13 6 6 6.06 1.0
R9 6 6 6.22 3.67
T14 6 9 9.57 59.5

Average 14.66

Table 1 Move count comparison for A* and GA.

– Population size: 1000
– Generations: 100
– Chromosome length: 20
– Mutation rate: 0.07

The GA was run 50 times on each board. Neither A* nor the genetic algorithm
found valid solutions for the “illegal” board, for which no solutions exist. The
following results therefore describe comparisons over 23 ZPG boards. In Table 1,
we first show the results in terms of solution quality. For each board, we give the
the optimum number of moves for completion (as found by A*), the length of the
best solution found by the GA, the average solution length for the GA, and the
average GA “quality overhead” in terms of excess moves. The table is ordered by
the number of moves required by the optimal solution. We observe that the GA
fails to find the optimal solution in only two cases (T12 and T14), and solves to
optimality all of the retail boards tested (see graphical depiction of quality results
in Figure 3). Over all boards, on average the GA finds solutions that require
roughly 15% more moves than the optimal solution.

We now consider the computational effort required by each algorithm. We
measure this in terms of board evaluations required, as we believe this to be the
best practical metric. Both algorithms use the same board evaluation code, so this
metric avoids complications arising from differential efficiency of implementation

rather than the inherent quality of the respective algorithms. In addition, in order
to ensure a fair comparison we only consider boards where the GA finds the optimal

solution, so we discount boards T12 and T14.
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Fig. 3 Graphical depiction of quality results.

Instance A* evals. Av. GA evals. % of A*
T1 903,634 27000 2.99
R1 123,084 1000 0.81
R2 152,265 1000 0.66
T2 77,272 30000 38.82
T3 109,284 1000 0.92
T4 2,962,349 48000 1.62
T5 956,861 35000 3.66
R3 30,759,145 25000 0.08
R4 2,983,478 1000 0.03
R5 2,983,134 2000 0.07
R6 912,676 1000 0.11
T6 1,137,751 13000 1.14
T7 158,756,106 50000 0.03
T8 15,092,790 45000 0.3
T9 33,414,980 53000 0.16
T10 128,639,420 47000 0.04
T11 9,896,968 32000 0.32
R7 5,888,672 31000 0.53
R8 15,728,328 48000 0.31
T13 22,742,096 12000 0.05
R9 5,888,672 31000 0.53

Average 2.53

Table 2 Number of evaluations for A* and GA.

The results are given in Table 2. The second column gives the number of
boards evaluated by A* to find the optimal solution. The third column gives the
average number of fitness evaluations required by the GA to find the optimal
solution, and the fourth shows this number as a proportion of the number of A*
evalutions (i.e., anything less than 100 shows an improvement over A*).

We observe that, with the exception of a single problem instance (T2), com-
pared to informed search the GA requires significantly fewer evaluations to find
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Fig. 4 The “problematic” board T2.

the optimum. Over all boards, the GA requires, on average, under 3% of the eval-
uations needed by A*. If we discount board T2, this falls to 0.65%.

Board T2 contains only rocks, and it is not immediately apparent from inspec-
tion why the GA struggles so much with this particular instance. The board is
shown in Figure 4; we note its small size, and relatively dense population of rocks
(21% of the board is occupied at the outset). We believe that this density reduces
the number of possible paths through the board, which is why this board has by
far the smallest search space. It may be that, in cases such as these, it is more
efficient to solve the instance using informed search.

6 Conclusions

In this paper we have described a novel genetic algorithm solution to a block-based
puzzle game. The game poses significant challenges in terms of the size of its search
space, but our solution is competitive with informed search in terms of solution
quality, and significantly out-performs it in terms of its computational resource
requirements.

We presented ZPG in order to both demonstrate the efficacy of a genetic algo-
rithm solution, and to encourage further study of its properties. Inspired by [15],
we wish to investigate questions such as “Is it possible to automatically generate
hard and easy instances of the problem?”, as well as considering the notion of
an aesthetically pleasing solution. Both of these questions could be addressed by
considering the effect (in terms of both instance difficulty and the “artistic merit”
of a solution) of the introduction (or omission) of various features, such as rocks,
leaves and ornaments.

In addition to providing a useful testbed for new solution methods, the problem
domain has real significance if we consider the problem of mobile robotics, where
a self-avoiding path must be chosen whilst also considering possible obstacles and
moveable objects. Future work will focus on formally establishing the difficulty of
the ZPG game, as well as further investigations into its solution.
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