
Particle Swarm Algorithm for Weighted Rectangle Placement

Yi-Chun Xu

Institute of Intelligent Vision and Image Information

and

School of Electrical Engineering and Information Technology

China Three Gorges University

China

xuyichun@tom.com

Ren-Bin Xiao

School of Electrical Engineering and Information Technology

China Three Gorges University

China

rbxiao@163.com

Martyn Amos

Department of Computing and Mathematics

Manchester Metropolitan University

United Kingdom

M.Amos@mmu.ac.uk

Abstract

In this paper we present a new algorithm for a layout

optimization problem: this concerns the placement of rect-

angular, weighted objects inside a circular container, the

two objectives being to minimize imbalance of mass and to

minimize the radius of the container. This problem carries

real practical significance in industrial applications (such

as the design of satellites), as well as being of significant

theoretical interest. Previous work has dealt almost exclu-

sively with purely circular objects, but here we deal with

the much more realistic case where objects are rectangular.

We present a particle swarm-based solution and compare it

with the best published algorithm for this problem. Exper-

imental results show that our approach out-performs this

existing method in terms of both solution quality and execu-

tion time.

1. Introduction

The Layout Optimization Problem (LOP) concerns the

physical placement of instruments or pieces of equipment

in a spacecraft or satellite. Because these objects have mass,

the system is subject to additional constraints (beyond sim-

ple Cartesian packing) that affect our solution. The two

main constraints that we handle in this paper are (1) the

space occupied by a given collection of objects (envelop-

ment), and (2) the non-equilibrium (i.e. imbalance) of the

system. The rest of the paper is organized as follows: In

Section 2 we first present a detailed description of the prob-

lem, and describe previous related research. In Section 3

we discuss in detail how to measure and thus optimize ob-

ject overlap. In Section 4 we describe the initial compaction

algorithm, and in Section 5 we describe our own particle

swarm local search method. We then give the results of

numerical experiments in Section 6, which confirm that our

method out-performs the previous best known algorithm for

this problem. We conclude with a discussion of future work.

2. Definition of the problem

The LOP was proposed by Feng et al. [2] in 1999, and

has significant implications for the cost and performance of

devices such as satellites and spacecraft. It concerns the two

dimensional physical placement of a collection of objects

(instruments or other pieces of equipment) within a space-

craft/satellite “cabinet”, or container. Previous work on this

Figure 1. Illustration of notation

problem [5, 9, 11, 14] has almost always modeled objects as

circles in order to simplify the packing process. However,

in real-world applications, objects are generally rectangular

in shape, and modeling them as circles leads to expensive

wastage of space.

A search of the relevant literature yields only a single pa-

per [12] dealing with the placement of rectangular objects

in this context. The solution described is similar in principle

to previous work, in that the authors transform the problem

to one with a single objective and then solve it using a ge-

netic algorithm (GA). However, the execution time of these

algorithms is generally high, and we seek a quicker method.

In this paper we present a rapid algorithm for the LOP

with rectangular objects. Our method derives from the in-

tuitive idea that we should first compact the objects tightly,

giving a “rough” initial solution. It is generally probable

that a good solution lies near the initial solution, so we

then apply a local search technique to find it. To obtain

the initial compact layout, we use a technique introduced

in [3, 10, 13]. We use an energy function to quantify the

degree of overlap between objects, and then optimize this

function to yield a compact layout. Finally, to perform the

local search we use particle swarm optimization [1, 4, 7, 8].

In what follows, we assume that each object is rectan-

gular, with dimensions, and mass. The container region is

assumed to be circular. Suppose there are n rectangular ob-

jects to be placed, with dimensions (a1, b1), (a2, b2), . . . ,

(an, bn) and masses m1, m2, . . . , mn. Assume the center

of mass and shape is located at the same point in each rect-

angle. All objects are to be placed in a circular container,

whose radius is R0. We set the Cartesian origin to the center

of the container. Let vector X =(x1, y1, z1,x2, y2, z2,. . . ,

xn, yn, zn) denote a layout, where (xi, yi) is the center of

the rectangle i, and zi is the angle between the edge ai and

the positive direction of the x-axis (Figure 1).

The static imbalance of the system may be defined as

follows:

B =

√

√

√

√(

n
∑

i=0

mixi)2 + (

n
∑

i=0

miyi)2 (1)

From (1), it is easy to know B ≥0, and B=0 when
∑n

i=1 mixi = 0 and
∑n

i=1 miyi = 0. This means that the

center of mass of the system should be located at the origin

(0, 0) if we require the imbalance of system be minimal.

Then, for a layout X , the envelopment radius, denoted by

envelop(X), is the longest distance from the center of mass

to any of the corner points of any object. This may be for-

malized as:

R = min
X

envelop(X)

= min
X

max
i=1,2,..,n

max(d(Ai, o
′), d(Bi, o

′),

d(Ci, o
′), d(Di, o

′))

(2)

where o′ is the center of mass of the system, Ai, Bi, Ci,

Di are the corner points of rectangle i, and d(P1, P2) returns

the Euclidian distance between point P1 and point P2.

How to deal with the constraints is a key issue in opti-

mization. In our method, we let the overlap constraints be

an objective of optimization. We use a function overlap(X ,

r) to quantify the overlap of a layout X , where r is the

radius of the container. The overlap objective can thus be

written as:

V = min
X

overlap(X, R0) = 0 (3)

3. Measurement and optimization of overlap

For convenience, we use overlap(i, j) to denote the over-

lap between rectangles i and j, overlap(i,r) to denote the

overlap between object i and the container, and overlap(i)
to denote the total overlap on object i:

overlap(X, r) =
n
∑

i=1

overlap(i)

=
n
∑

i=1

(
n
∑

j=1

overlap(i, j)+overlap(i, r))
(4)

3.1. Determining existence of overlap

Before measuring overlap, we require very some simple

rules to first judge whether or not overlap exists. Suppose

we have two rectangles 2ABCD and 2A′B′C′D′. The

sufficient and necessary conditions for no overlap include

all the following:

1. 2ABCD is not inside 2A′B′C′D′, or vice versa.

2. None of the edges of 2ABCD intersect any of the

edges of 2A′B′C′D′.

3.2. Overlap definitions

It is reasonable to try to precisely quantify overlapping

area, but, in practise, this is complex and computationally

expensive. More importantly, it is often also difficult to find

2

an object movement by which overlap may be reduced. Let

li denote the distance from the center of rectangle i to a

corner point of i. Denote the distance between rectangles i

and j by di,j , and denote the distance between rectangle i

and the container center bydi,o. We now give our definitions

of overlap(i, j) and overlap(i, r):

overlap(i, j) =
{

li + lj − di,j , if overlap exists between i and j

0, otherwise

(5)
overlap(i, r) =
{

di,o, if overlap exists between i and the container

0, otherwise

(6)

where di,j =
√

(xi − xj)2 + (yi − yj)2, and di,o =
√

x2
i + y2

i . It is obvious that overlap(i,j) ≥0 and

overlap(i,r) ≥0.

3.3. Moving rectangles to reduce overlap

From (5) and (6), it is easy to see that, if overlap ex-

ists between i and j, the reduction of overlap(i, j) requires

us to enlarge di,j , the distance from i to j. If overlap ex-

ists between i and the container, we should shorten di,o, the

distance from i to the origin. By the strategy of gradient

descent, we obtain the motion direction of rectangle i:

∂overlap(i)
∂xi

= −
n
∑

j=1

2(xi−xj)√
(xi−xj)2+(yi−yj)2

+ 2xi√
x2

i
+y2

i

∂overlap(i)

∂yi
= −

n
∑

j=1

2(yi−yj)√
(xi−xj)2+(yi−yj)2

+ 2yi√
x2

i
+y2

i

(7)

So the iteration steps to reduce the overlap(i) are:

xi := xi + α
∂overlap(i)

∂xi
,

yi := yi + α
∂overlap(i)

∂yi
.

(8)

The step length α is first set to 1. If overlap(i) does not

decrease, l set α = 0.618α and repeat. This loop continues

until either overlap(i) is reduced or α is arbitrarily small

enough.

4. Compaction algorithm

The purpose of the compaction algorithm (CA) is to ob-

tain an initial layout without overlaps, where the objects are

compacted reasonably tightly. The algorithm first moves the

objects to get a layout without overlap. It then reduces the

radius of the container and searches once again for a fea-

sible layout. This process is continued until the algorithm

cannot find a feasible layout within a container of a certain

radius. At this point, we say that a tightly compacted layout

has been reached. The main steps are described as follows:

function compaction

• Predefined constant δ is the compaction step length, ε

is a small positive number

1. Generate a random layout X . Set r = R0 and

last overlap = overlap(X).

2. Set this overlap = move(X , r) (reduce overlap)

3. If this overlap = 0, let r = r − δ and goto 2 (compact)

4. If |this overlap − last overlap| > ε, goto 2 (Cannot

compact any more, so make the overlap = 0)

5. While last overlap > ε, last overlap = move(X , R0).

6. Return X

end compaction

function move (X , r)

1. for i = 1 to n, {
2. if overlap(i) >0 {
3. Get the motion direction by (7) and set α = 1

4. Get the new position of rectanglei by (8);

5. If overlap of i increases and α > ε, set α = 0.618α and

go to 4

6. Update the position of i } }
7. Return overlap(X , r)

end move

From the above description, it is clear that the CA has

two major shortcomings: First, only translation movements

of objects are considered, and rotations are ignored. If we

rotate a rectangle, it is perfectly possible that the layout may

improved. Secondly, the imbalance objective is not consid-

ered. We now show how to overcome these shortcomings

with a local search process.

5. Particle swarm local search

Particle swarm optimization (PSO) [1, 4, 7, 8] is suitable

for problems where the objective function is not differen-

tiable. Like evolutionary algorithms, it uses a population,

or group of particles, to search for the optimum. A par-

ticle regards a solution to the problem as its position and

the optimum as the target position. Particles use the notion

of velocity to alter their position and move to to the tar-

get. The velocity of a particle is determined by its inertia,

the best position in its history, and the best position in the

whole group. The “best positions” are evaluated by a fitness

function, which usually is the objective function. The main

stages in PSO are:

3

1. Set up k particles, each with a random initial position

p and initial velocity v = 0;

2. For each particle, update its velocity and position by

(9) and (10):

v := C1 ∗ v + C2 ∗ rand() ∗ (pbest − p)
+C3 ∗ rand() ∗ (gbest− p)

(9)

p := p + v (10)

3. Repeat Step 2 for a predefined m cycles and output the

details of the best particle

In (9) and (10), p and v denote the position and the ve-

locity, rand() is a function to return a random floating point

number between [0,1], pbest denotes the best position of

the particle and gbest denotes the global best position of the

group. C1, C2 and C3 are three constants that can influence

the convergence speed of PSO if they meet a constraint [1].

In this paper we set C1 = 0.729 and C2 = C3 = 1.49445,

as in [8].

5.1. Applying PSO after compaction

Although PSO can often show good convergence, it is

prone to becoming trapped in local minima. Although tech-

niques such as mutation have been tried in the past in order

to alleviate this problem, it does not yield satisfactory so-

lutions when applied globally to layout problems [5]. In

this paper we do not depend on PSO for the global search.

Instead, much of the work is done with the compaction al-

gorithm, and we only apply PSO as a local search tool to

its output once a reasonable layout has been produced (al-

though we do test PSO on its own for purposes of compari-

son).

The general local search starts from an initial feasible

solution and searches the neighborhood for a better solu-

tion [6]. After we obtain the feasible layout X0 generated

by CA, we use it as a starting point to apply a local search

method that we name particle swarm local search (PSLS).

Unlike the standard PSO, which starts from random posi-

tions, PSLS initializes the positions of particles as follows:

p[1] = X0,

p[i] = X0 + rand(), i = 2, 3, . . ., k
(11)

In (11), X0 is set as the position of a particle. Then,

during the iteration steps, the “gbest” particles are known to

be better than X0. The fitness function of PSLS is described

as:

fitness (X) =

envelop(X) +

{

L, if overlap(X) > ε,

0, otherwise.

(12)

where L is a very large constant, and ε is a very

small positive number. The purpose of using L instead of

overlap(X) is to prevent overlap – if a small overlap ap-

pears, the fitness value will increase a lot.

6. Numerical experiments

We use four examples to test our algorithm, three of

which are taken from [12]. The relatively small size of the

existing test cases may be due to reasons of computational

feasibility – the reported computational time for a nine ob-

ject example is more than three hours. We therefore design

a “large-scale” example that has twenty objects as the fourth

test case. The dimensions and masses of the rectangles are

listed in Table 1. The first three test cases were used to mea-

sure the performance of the GA, PSO alone, and CA-PSLS,

and the fourth was used to measure both particle-based al-

gorithms. Both PSO and CA-PSLS used 30 particles, and

ran for 5000 and 4500 cycles respectively.

The computational results are listed in Table 2, where

the radii of envelopment, imbalance and the elapsed ma-

chine time are used to compare the performance of the al-

gorithms. Results for radius and imbalance are given as the

best result obtained over 10 runs. In Table 2, our algorithm

in this paper is denoted as CA-PSLS, PSO alone as PSO

and the algorithm in [12] as GA (genetic algorithm). Be-

cause our tests were run on a 1.83G/512M computer and

the GA in [12] was run on a 586/166M CPU, we simply use

t′ = 1830
166 × t to convert run time (of course, the comparison

is imprecise, but it serves for the purposes of illustration).

Graphical representations of our best solutions for each case

are shown in Figure 2.

Figure 2. Results for 4 test cases

The results show that both particle-based algorithms

consistently outperform the GA in terms of envelopment ra-

dius and imbalance, and offer a significant improvement in

terms of machine time. For small problem instances, the

compaction algorithm offers little advantage over “pure”

4

Table 1. Sizes and masses of four test cases
Example 1 Sizes (8,6), (8,8), (10,6), (12,4), (6,6)

(5 objects) Masses 12, 16, 15, 12, 9

Example 2 Sizes (8,6), (8,8), (10,6), (10,8),

(6 objects) (10, 10) (12,6)

Masses 12, 16, 15, 20, 25, 18

Example 3 Sizes (8,6), (8,8), (10,6), (10,8),

(9 objects) (10,10), (12,6), (12,4),

(12,8), (12,10)

Masses 12, 16, 15, 20, 25, 18, 12, 24, 30

Example 4 Sizes (8,5), (4,8), (10,6), (7,8),

(20 objects) (10,3), (12,6), (12,4), (12,6),

(8,10), (7,3), (8,6), (8,3,)

(10,6), (10,8), (10,7),

(12,5), (12,4), (10,8),

(12,10), (6,6)

Masses 10, 8, 15, 14, 7.5, 18, 12, 18,

20, 5.25, 12, 6, 15, 20, 17.5, 15,

12, 20, 30, 9

Table 2. Results of numerical experiments
Algorithm Envelopment Imbalance Time (s)

1 GA 11.801 < 10 4718

PSO 11.333 0 77

CA-PSLS 11.598 0 77

2 GA 15.002 < 10 5229

PSO 14.049 0 121

CA-PSLS 14.617 0 121

3 GA 18.851 < 10 10980

PSO 17.734 0 342

CA-PSLS 18.343 0 287

4 GA — — —

PSO 30.289 0 1852

CA-PSLS 26.660 0 1786

PSO, but when the problem size is increased, the benefit

of its inclusion quickly becomes apparent.

7. Conclusions

Since evolutionary algorithms generally start from a ran-

dom population and their evolutionary processes are also

stochastic, they often perform badly when applied to con-

strained layout optimization problems. In this paper we

have described an alternative particle-based algorithm for

the placement of weighted rectangles within a containing

circle. This method significantly out-performs the only

known algorithm for this problem, a method which is evo-

lutionary in nature.

Our algorithm moves objects and then compacts them

to get a reasonable feasible solution, then uses this feasible

solution as the starting point for particle swarm optimiza-

tion. Although the results obtained are promising, much

more work is required, in terms of both testing it against

larger “real world” problem instances, and further refining

the underlying heuristics.

References

[1] M. Clerc and J.Kennedy. The particle system - exploration,

stabilty, and convergence in a multidimensional complex

space. IEEE Transactions on Evolutionary Computation,

6(1):53–58, 2002.

[2] E. Feng, X. Wang, X. Wang, and H. Teng. An algorithm of

global optimization for solving layout problems. European

Journal of Operational Research, 114:430–436, 1999.

[3] W. Huang and R. Xu. Two personification strategies for

solving circles packing problem. Science in China (Ser. E),

29(4):347–353, 1999.

[4] J. Kennedy and J. Eberhart. Particle swarm optimization. In

Proc. IEEE Int’l. Conf. on Neural Networks, pages 1942–

1948, 1995.

[5] N. Li, F. Liu, and D. Sun. A study on the particle swarm

optimization with mutation operator constrained layout op-

timization. Chinese Journal of Computers, 27(7):897–903,

2004.

[6] C. H. Papadimitriou and K. Steiglitz. Combinatorial Opti-

mization: Algorithms and Complexity. Courier Dover Pub-

lications, 1998.

[7] Y. Shi and R. Ebehart. A modified particle swarm optimizer.

In Proc. IEEE Int’l. Conf. on Evolutionary Computation,

pages 69–73, 1998.

[8] Y. Shi and R. Ebehart. Comparing inertia weights and con-

striction factors in particle swarm optimization. In Proc.

Congress on Evolutionary Computation, pages 84–88, 2000.

[9] F. Tang and H. Teng. A modified genetic algorithm and

its application to layout optimization. Journal of Software,

10:1096–1102, 1999.

[10] H. Wang, W. Huang, Q. Zhang, and D. Xu. An improved al-

gorithm for the packing of unequal circles within a larger

containing circle. European Journal of Operational Re-

search, 141:440–453, 2002.

[11] Y. Yu, J. Cha, and X. Tang. Learning based GA and

application in packing. Chinese Journal of Computers,

24(12):1242–1249, 2001.

[12] J. Zhai, E. Feng, Z. Li, and H. Yin. Non-overlapped genetic

algorithm for layout problem with behavioral constraints.

Journal of Dalian University of Technology, 39(3):352–357,

1999.

[13] D. Zhang and A. Deng. An effective hybrid algorithm for

the problem of packing circles into a larger containing circle.

Computers & Operations Research, 32:1941–1951, 2005.

[14] C. Zhou, L. Gao, and H. Gao. Particle swarm optimization

based algorithm for constrained layout optimization. Con-

trol and Decision, 20(1):36–40, 2005.

5

