
A Novel Genetic Algorithm for the Layout Optimization Problem

Yi-Chun Xu, Ren-Bin Xiao and Martyn Amos

Abstract— In this paper we present a new algorithm for the

Layout Optimization Problem: this concerns the placement of

circular, weighted objects inside a circular container, the two

objectives being to minimize imbalance of mass and to minimize

the radius of the container. This problem carries real practical

significance in industrial applications (such as the design of

satellites), as well as being of significant theoretical interest.

We present a genetic algorithm solution and compare it with

two existing nature-inspired methods, one of which is the best

published algorithm for this problem. Experimental results

show that our approach out-performs these existing methods

in terms of both solution quality and execution time.

I. INTRODUCTION

The Layout Optimization Problem (LOP) concerns the

physical placement of instruments or pieces of equipment in,

for example, a spacecraft or satellite. Because these objects

have mass, the system is subject to additional constraints

(beyond simple Cartesian packing) that affect our solution.

The two main constraints that we handle in this paper are

(1) the space occupied by a given collection of objects, and

(2) the non-equilibrium (i.e. imbalance) of the system. The

rest of the paper is organized as follows: we first present a

detailed description of the problem, and describe previous

related research. We then describe our own algorithm, and

give the results of numerical experiments. These confirm that

our method out-performs the previous best known algorithm

for this problem.

II. DESCRIPTION OF THE PROBLEM

The LOP was proposed by Teng et al. [1] in 1994, and

has significant implications for the cost and performance

of devices such as satellites and spacecraft. It concerns

the two dimensional physical placement of a collection of

objects (instruments or other pieces of equipment) within a

spacecraft/satellite “cabinet”, or container (Figure 1(a)). In

what follows, we assume that each object is circular, with a

radius, and a mass. The container region is also assumed to

be circular (Figure 1(b)).

In short, we are required to pack, without overlaps, a

collection of weighted circles within a single containing

circle, whilst minimizing the radius of the container and

ensuring that the overall distribution of mass is balanced. The

LOP is demonstrably NP-hard [2][3]; it was first proposed

by Teng et al. [1] and further developed by Feng et al. [4],

who proposed a solution based on graph and group theory.

Y.-C. Xu is with the Institute of Intelligent Vision and Image Information,
School of Electrical Engineering and Information Technology, China Three
Gorges University, China (e-mail: xuyichun@tom.com); R.-B. Xiao is with
the School of Electrical Engineering and Information Technology, China
Three Gorges University, China (e-mail: rbxiao@163.com); M. Amos is with
the Department of Computing and Mathematics, Manchester Metropolitan
University, United Kingdom (e-mail: martyn@martynamos.com).

A. Previous Work

Several algorithms for the LOP have been proposed, some

based on the Genetic Algorithm (GA) [5], [6], [7], and others

on Particle Swarm Optimization (PSO) [8], [9]. However,

these are all iterative methods. The positions of the circles,

which we call the initial layout, are first randomly generated,

and then a search method is used to improve the quality of

the layout. However, the overall search space becomes very

large when the number of circles increases only moderately,

and, with little heuristic information available to them, it is

hard for those methods to find high quality layouts.

In terms of general circle packing, in [10] the authors fit

circles into a rectangular frame, where the circles are placed

sequentially and the position of each individually calculated.

The authors of [11] use a similar idea to pack circles into

a containing circle. However, because packed objects lack

mass within their problem definition, these algorithms cannot

be directly applied to the LOP.

B. Overview

We first describe a novel order-based positioning tech-

nique (OPT) for the LOP. Given a sequence of circles,

which defines their placement in a specific order, the OPT

generates an initial layout in O(n4) time. The problem

then becomes one of finding the best ordering of circles,

rather than finding the optimal direct placement of each

circle, as in previous work. Since there exist, for n circles,

n! = n × (n − 1) × · · · × 2 × 1 sequences, we propose a

genetic algorithm to search this permutation space. We now

describe in detail the problem and its solution.

III. DEFINITIONS

Let L = {1, 2, . . . , n} denote a set of n circles (i.e.,

objects) with radii r1, r2, · · · , rn and mass m1, m2, · · · , mn.

Given a Cartesian coordinate system with some central

origin, o (the center of the satellite containing circle, in our

case), let (xi, yi) denote the position of circle i.

A. Previous Models

The models previously given in [5], [6], [7], [8], [9] may

be described as follows:

3938

1-4244-1340-0/07/$25.00 c©2007 IEEE



(a) (b)

Fig. 1. (a) Collection of objects within a containing cabinet. (b) Two-dimensional plan view.

min f1(L) = max
1≤i≤n

(
ri +

√
x2

i + y2
i

)
, (1)

min f2(L) =

√√√√(

n∑
i=1

miω2xi)2 + (

n∑
i=1

miω2yi)2. (2)

subject to:

∀i, j = 1 . . . n,√
(xi − xj)2 + (yi − yj)2 ≤ ri + rj ,(3)

f1(L) < r0, (4)

f2(L) < δ. (5)

Equation (1) attempts to minimize f1, the satellite radius

containing all of the circles, L. Equation (2) attempts to

minimize f2, the non-equilibrium of mass for a collection of

circles around the central point, L, where ω is the rotational

speed of the satellite. As the value of ω does not affect the

optimality of f2, we set ω = 1 in what follows.

Three constraints are applied: Equation (3) ensures that

none of the circles can overlap any other; Equation (4)

ensures that the satellite containing radius has an upper

bound; Equation (5) ensures that the overall imbalance of

mass is within some bound.

It is clear that the LOP is a multi-objective optimization

problem. In previous work, two objectives are often com-

bined into a single objective by a pair of weights λ1 and λ2

[5], [6], [7], [8], [9]:

min f(L) = λ1f1(L) + λ2f2(L). (6)

B. Our Model

In the “real world” domain of application for this problem,

the mass imbalance that the system can tolerate (i.e., δ in (5))

is very small [5], [6], [7], [8], [9]. Therefore, in our model,

we require the imbalance of the system be zero. Note that our

requirement is stricter than that of (5). It seems intuitively

obvious that this requirement may result in a suboptimal

solution. However, the situation is not actually as bad as

might be imagined. We know that the center of mass of the

system is

o
′

= (

∑n

i=1 mixi∑n

i=1 mi

,

∑n

i=1 miyi∑n

i=1 mi

). (7)

If we require the imbalance to be zero, we can shift every

circle and let o
′

became the center of the satellite. If the

envelopment radius of a layout is R, then the new radius

after the shift R
′ ≤ R+ |oo′ |. From (2) and (5), the distance

|oo′ | < δP
n
i=1 mi

. Because in general δ is very small and∑n
i=1 mi is very large, the distance |oo′ | can be omitted.

This supports the assertion that we can require the imbalance

of the system to be zero without significantly affecting the

optimality of the final solution.

If the center of mass of the system is defined as the center

of the satellite, the overall “envelopment” (i.e., containing

radius) of the system becomes:

envelop(L) = max
1≤i≤n(

ri +

√
(xi −

∑n

j=1 mjxj∑n

j=1 mj

)2 + (yi −
∑n

i=j mjyj∑n

j=1 mj

)2

)
.

(8)

and our constrained optimization problem becomes:

min envelop(L), subject to:

∀i, j = 1 . . . n,√
(xi − xj)2 + (yi − yj)2 ≤ ri + rj , (9)

envelop(L) < r0. (10)

IV. THE ORDER-BASED POSITIONING TECHNIQUE

(OPT)

In previous work on the LOP, a random layout is generated

and then iteratively improved until a satisfactory solution

is obtained. Because the possible search space is so large,

an algorithm’s performance (in terms of quality) is strongly

tied to the initial layout. In addition, the running times

of such algorithms tend to be prohibitively large. Here,

we demonstrate an alternative positioning technique which

yields compact layouts in an efficient manner.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3939



Fig. 2. Positions defined by pair of circles (i, j)

Let (i1, i2, . . . , in) be a permutation of (1, 2, . . . , n). We

position our circles in L one by one in the order defined by

this permutation. Suppose we have already placed the circles

(i1, i2, . . . , ik−1): we now describe the strategy for placing

circle ik.

When positioning circle ik (where k > 2, see Remark 1

below), we require that the circle should touch at least two

previously positioned circles. This is a reasonable require-

ment, since immediate adjacency will generally yield a more

compact layout than one defined by spatially separate circles.

This can be explained well by a simple LOP example with

two existing circles (Figure 2). Since two existing circles

define two possible positions for a third ik (these positions

being denoted by the dashed lines), then k−1 existing circles

can define 2×C2
k−1 positions. For example, when positioning

circle i4, we have three pairs, (i1, i2), (i1, i3), and (i2, i3),
giving six available positions for i4.

The significant question we must address is how to select

the best position for circle ik from the 2 × C2
k−1 available

positions. We know that, for each additional circle, the

envelopment radius as a whole is generally enlarged. In order

to minimize the rate of growth of this radius, we must choose

a position for circle ik (from a possibly very large set of

candidates) which yields the minimal envelopment radius.

One approach is to apply a greedy policy.

The evaluation of the partial layout is performed in

similar fashion to (8), but this time only k circles are used:

envelop({i1, i2, . . . , ik}) = max
i∈(i1,i2,...,ik)

0
B@ri +

vuuut(xi −

P
j=i1,i2,...,ik

mjxj
P

j=i1,i2,...,ik
mj

)2 + (yi −

P
j=i1 ,i2,...,ik

mjyj
P

j=i1,i2,...,ik
mj

)2

1
CA .

(11)

Remark 1: Circles i1 and i2 must first be positioned. In

what follows, we simply place them adjacent to one another,

defining their positions as (−ri1 , 0) and (ri2 , 0).
Remark 2: Although we state that there are 2 × C2

k−1

positions available for circle ik, some of these positions

may introduce an overlap. These positions are therefore

excluded when we choose the position for ik. This remark

can be explained with reference to Figure 3, where we are

attempting to place circle 4. If, in this particular case, circle 4

happens to be small (the lower of the two shown to the right

of Figure 3), then there are 6 positions available (shown by

Fig. 3. Size of circle to be placed affects number of possible positions.

solid circles). However, if circle 4 happens to be large, then

only 3 positions are valid (shown by the dashed circles).

Remark 3: Because we assess 2 × C2
k−1 positions

when placing circle ik, each time checking for overlaps

k − 1 times, then the total number of steps is about

2 ×∑n

k=1(C
2
k−1 · (k − 1)), and the overall time complexity

of the OPT is O(n4).

We now describe the OPT in pseudo-code:

Input: a permutation (i1, i2, . . . , in)
Output: a layout defined by the permutation.

OPT

{
Set (xi1 , yi1) = (−ri1 , 0), (xi2 , yi2) = (ri2 , 0)
Repeat for each circle ik, 2 < k ≤ n
{

Set BestEnvelop = ∞
Repeat for each pair of circles (im, in),
where m < k, n < k, m �= n
{

Calculate the two positions (x1, y1) and (x2, y2) for ik
by (im, in), which satisfy the following:

(x − xim
)2 + (y − yim

)2 = (rik
+ rim

)2

(x − xin
)2 + (y − yin

)2 = (rik
+ rin

)2

Test (x1, y1) and (x2, y2). If any of them do not cause

overlaps, calculate the envelopment radius using (11),

then update BestEnvelop and store (xik
, yik

) in case

it reduces the envelopment radius

}
}
Output the layout (xi1 , yi1 , · · · , xin

, yin
)

}

We have described an efficient algorithm for generating

reasonable initial layouts, given a sequence of circles to be

placed. We now show how to search the (large) space of

permutations to find a circle sequence that gives rise to an

optimal layout.

V. OUR GENETIC ALGORITHM

GAs have been successfully applied to problems similar

to the LOP (such as bin-packing [12], [13]), as well as,

more generally, other NP-complete problems [14]. We now

describe the operation of our own GA.

3940 2007 IEEE Congress on Evolutionary Computation (CEC 2007)



A. GA for the Layout Optimization Problem

As described in the previous Section, a permutation of

(1, 2, . . . , n) can yield a layout by specifying the order in

which circles are placed. As there exist n! possible permuta-

tions for n circles, the GA is an appropriate technique to use

in order to search such a large space. We should emphasize,

for the purposes of clarity, that unlike in [6], where the GA

was used to evolve the positions of each circle, we use a

GA to evolve the placement order of each circle. We now

describe specific aspects of our generational GA.

1) Coding Scheme: We use a permutation of (1, 2, . . . , n),
(i1, i2, . . . , in), to code a individual. M individuals are

randomly generated to form the initial population.

2) Fitness Function: We define fitness as the envelopment

radius. To evaluate each individual, we first use OPT to

obtain the layout specified by the individual, and then use

(8) to get the fitness.

3) Crossover Operator: We apply a crossover operation

that retains the validity of permutations (that is, each element

in an individual’s gene sequence is unique), as described in

[13]. For convenience, we assume M is an even number,

so we have M/2 pairs of parents. For each pair of parents,

we apply the crossover operation to generate two children.

In this paper, we apply crossover as follows: l1 and l2 are

a pair of parent solutions. Suppose p is a random integer,

where 1 ≤ p ≤ n. The first child is generated by taking

circles 1 . . . p from l1 and appending to this subsequence

any missing circles in the order in which they appear in

l2. The second child is obtained in the same way, only with

with first subsequence taken from l2, and the remainder being

made up from l1. For example, given l1 = (1, 2, 3, 4, 5) and

l2 = (5, 4, 3, 2, 1), with p = 3, the two offspring sequences

would be (1, 2, 3, 5, 4) and (5, 4, 3, 1, 2).
4) Mutation Operator: If an individual is selected for

mutation, we randomly select two circles from its sequence

and exchange their positions.

VI. EXPERIMENTAL RESULTS

We compare our algorithm with an alternative evolutionary

approach [6], and with an algorithm based on Particle Swarm

Optimization [9], which is the best published algorithm for

this problem to date. These other methods both search for

the optimal layout by directly evolving the positions of

every circle (as well as considering imbalance). We use the

following benchmark suite of 10 problem instances to test

the three algorithms:
1) Size= 10,

Radii[ ]={20, 22, 17, 17, 7, 21, 11, 5, 23, 8},
Mass[ ]={35, 61, 49, 89, 68, 80, 93, 82, 70, 20};

2) Size= 15,
Radii[ ]={8,14,8,15,11,17,21,16,6,18,24,13,20,10,15},
Mass[ ]={75,29,36,58,75,32,98,52,76,85,59,18,85,36,12};

3) Size= 20,
Radii[ ]={20,24,8,11,13,7,7,15,24,18,15,17,17,14,16,18,5,21,
21,13},
Mass[ ]={86,72,81,54,29,94,92,41,57,77,40,67,31,47,39,61,73,
83,11,20};

4) Size= 25,
Radii[ ]={24,16,19,7,14,24,15,6,16,16,23,10,9,10,18,22,7,9,7,

13,14,8,18,6,8},
Mass[]={16,80,52,21,42,86,67,96,61,79,57,62,32,38,20,75,80,
11,53,32,41,68,
85,53,71};

5) Size= 30, Radii[ ]={14,15,11,19,9,6,23,9,23,13,24,12,24,24,
10,8,9,8,6,11,6,16,24,12,9,19,13,24,21,18},
Mass[ ]={24,52,37,17,12,19,51,67,23,46,14,96,55,84,21,92,69,
65,72,36,73,83, 83,97,73,81,30,46,49,51};

6) Size= 35,
Radii[ ]={10,20,13,19,19,10,14,14,24,11,20,15,7,18,22,10,13
,12,21,14,9,10, 9,7,8,18,8,8,23,14,13,21,23,16,10},
Mass[]={44,46,14,32,70,31,95,24,75,99,99,79,10,79,69,64,
12,47,41,62,17,85, 43,70,43,63,44,57,62,20,17,80,47,68,19};

7) Size= 40,
Radii[ ]={6,12,20,6,14,19,9,20,10,13,12,14,23,17,16,19,15,
10,12,18,21,6,20,17,13, 20,17,6,21,15,12,9,14,20,23,16,23,
9,23,18},
Mass[ ]={74,48,16,35,19,58,87,90,17,29,32,63,46,76,26,88,
71,49,89,14,68,94,41, 53,36,67,14,88,99,46,66,14,21,44,73,
72,72,37,82,12};

8) Size= 45,
Radii[ ]={13,8,11,21,9,20,24,20,17,21,7,13,24,7,6,8,18,15,
12,18,17,21, 8,23,22,15,10,17,24,8,14,6,16,14,6,10,19,21,20,
6,16,14,6,19,11},
Mass[ ]={91,95,96,47,63,37,56,96,84,70,36,41,48,12,86,43,
70,71,56,89,52,49,53, 82,42,35,11,82,88,58,74,16,91,57,26,
39,48,68,72,69,27,44,25,99,96};

9) Size=50,
Radii[ ]={9,17,5,15,24,23,12,9,5,13,7,18,19,21,7,18,18,24,
12,23,22,13,5, 6,17,21,7,18,14,17,10,15,18,8,8,16,7,18,24,6,
20,10,21,11,22,24,12,7,14,11},
Mass[ ]={19,85,60,19,88,18,28,55,66,47,49,69,93,94,35,43,
93,34,27,61,20,52,51,41, 98,85,82,89,54,43,54,94,80,99,41,
41,63,28,19,53,11,78,65,10,98,43,78,24,84,16};

10) Size= 55,
Radii[ ]={17,23,17,13,18,21,23,22,7,9,8,13,20,11,10,19,10,
14,12,22,19,10,17,11,21, 8,15,16,19,21,17,19,8,6,13,13,14,
19,18,23,20,24,24,13,13,19,7,6,10,8,8,10,24,19,24},
Mass[ ]={97,62,28,36,97,58,13,21,40,97,79,90,62,47,64,23,
23,95,99,44,71,79,52,59, 47,60,41,47,90,95,81,98,70,47,90,
13,93,50,21,80,17,52,96,73,88,16,91,97,40,52,
50,90,19,69,14};

We set the GA parameters as follows: generations = 100,

population size = 20, mutation rate = 0.125. The system

parameters of the other two algorithms are set according to

the descriptions in [6], [9].

Our results are shown in Table I, with the best layouts

generated by our algorithm shown in Figure 4. Each algo-

rithm was run 10 times. Results are shown for best overall

envelopment radius, R, obtained, average value of R, average

unbalance, u, and average run time, t. All experiments were

carried out on an Intel Celeron 1.5GHZ/256M PC.

Our findings clearly show that the GA provided by [6]

performs worst out of the three algorithms on all 10 in-

stances. The PSO algorithm [6] gets better results, and our

GA performs best of all. Our algorithm out-performs the

other two according to all four metrics: in terms of R
we achieve an average performance improvement of over

30% over the other two algorithms. We consistently achieve

zero imbalance, unlike the others, and our implementation

generally runs 5 to 10 times faster in terms of machine time.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3941



TABLE I

NUMERICAL RESULTS FOR 10 RUNS OF EACH ALGORITHM ON EACH OF 10 LOP INSTANCES.

GA: Tang et al.[6] PSO: Zhou et al. [9] Our Algorithm

LOP Best R R u t Best R R u t Best R R u t

1 82.03 90.41 1.58 39621 61.32 64.08 0.0002 18401 60.41 60.96 0 466
2 135.43 154.62 1.93 68841 76.58 78.52 0.0002 31816 67.49 68.53 0 1536
3 167.78 172.76 5.93 97477 89.15 89.58 0.0002 47496 82.63 84.23 0 3593
4 161.15 177.51 4.19 142020 106.31 109.40 0.0002 63201 83.74 84.93 0 6393
5 180.73 200.46 2.16 192330 136.88 142.77 0.0004 87985 99.78 101.04 0 11061
6 193.23 206.74 5.47 254591 148.39 154.78 0.0004 112144 103.56 104.38 0 17274
7 214.86 223.14 3.78 322568 165.79 172.59 0.0004 138030 116.17 116.77 0 25421
8 215.85 228.20 1.69 400186 172.69 180.16 0.0004 202446 119.02 120.89 0 35499
9 214.93 228.10 2.97 536608 189.89 194.02 0.0005 192479 124.91 126.86 0 47716
10 225.13 233.58 1.36 595425 200.82 208.67 0.0003 236835 137.52 139.39 0 64363

VII. CONCLUSIONS

In this paper we provide a novel order-based positioning

technique (OPT) for the layout optimization problem in

satellites. We combine this method with a genetic algorithm

to search the space of possible object orderings. Numerical

results show that this algorithm out-performs the best pub-

lished solution method for this problem, in terms of both

solution quality and execution time. Future work will focus

on the packing of irregular (as opposed to round) shapes

within satellite bodies.

ACKNOWLEDGMENTS

We would like to thank the authors of [6] and [9] for

sharing their code. This work was supported by the National

Natural Science Foundation of China (No. 60474077).

REFERENCES

[1] H. Teng, S. Sun, W. Ge, and W. Zhong, “Layout optimization for
dishes installed on a rotating table,” Science in China (A), vol. 37,
no. 10, pp. 1271–1280, 1994.

[2] R. Fowler, M. Paterson, and S. Tanimoto, “Optimal packing and cov-
ering in the plane are NP-complete,” Information Processing Letters,
vol. 12, no. 3, pp. 133–137, 1981.

[3] H. Wang, W. Huang, Q. Zhang, and D. Xu, “An improved algorithm
for the packing of unequal circles within a larger containing circle,”
European Journal of Operational Research, vol. 141, pp. 440–453,
2002.

[4] E. Feng, X. Wang, X. Wang, and H. Teng, “An algorithm of global
optimization for solving layout problems,” European Journal of Op-
erational Research, vol. 114, pp. 430–436, 1999.

[5] Z. Qian, H. Teng, and Z. Sun, “Human-computer interactive genetic
algorithm and its application to constrained layout optimization,”
Chinese Journal of Computers, vol. 24, no. 5, pp. 553–559, 2001.

[6] F. Tang and H. Teng, “A modified genetic algorithm and its application
to layout optimization,” Journal of Software, vol. 10, pp. 1096–1102,
1999.

[7] Y. Yu, J. Cha, and X. Tang, “Learning based GA and application in
packing,” Chinese Journal of Computers, vol. 24, no. 12, pp. 1242–
1249, 2001.

[8] N. Li, F. Liu, and D. Sun, “A study on the particle swarm optimization
with mutation operator constrained layout optimization,” Chinese

Journal of Computers, vol. 27, no. 7, pp. 897–903, 2004.
[9] C. Zhou, L. Gao, and H. Gao, “Particle swarm optimization based

algorithm for constrained layout optimization,” Control and Decision,
vol. 20, no. 1, pp. 36–40, 2005.

[10] J. George, J. George, and B. Lamar, “Packing different-sized circles
into a rectangular container,” European Journal of Operational Re-

search, vol. 84, pp. 693–712, 1995.
[11] W. Huang, Y. Li, C. Li, and R. Xu, “New heuristics for packing

unequal circles into a circular container,” Computers & Operations

Research, vol. 33, pp. 2125–2142, 2006.

[12] B. Kroger, “Guillotineable bin packing: A genetic approach,” Euro-
pean Journal of Operational Research, vol. 84, pp. 645–661, 1995.

[13] D. Liu and H. Teng, “An improved BL-algorithm for genetic algo-
rithm of the orthogonal packing of rectangles,” European Journal of

Operational Research, vol. 112, pp. 413–420, 1999.
[14] K. A. De Jong and W. M. Spears, “Using genetic algorithms to solve

NP-complete problems,” in Proceedings of the Third International

Conference on Genetic Algorithms, J. D. Schaffer, Ed. Morgan
Kaufmann, 1989, pp. 124–132.

3942 2007 IEEE Congress on Evolutionary Computation (CEC 2007)



(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j)

Fig. 4. Best solution found for each of the 10 instances. (a) R=60.41 (b) R=67.49 (c) R=82.63 (d) R=83.74 (e) R=99.78 (f) R=103.56 (g) R=116.17
(h) R=119.02 (i) R=124.91 (j) R=137.52.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3943



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


